Citation:
ZHANG Qin-Ku, YAO Bing-Hua, YU Yan, LU Pan, PANG Bo, XIONG Min. Effects of Calcination Temperature on Crystal Structure and Photocatalytic Activity of In2TiO5 Nanobelts[J]. Chinese Journal of Inorganic Chemistry,
;2015, 31(10): 1953-1958.
doi:
10.11862/CJIC.2015.175
-
In2TiO5 nanobelts were fabricated by means of electrospinning using Ti(OC4H9)4、In(NO3)3 and polyvinyl pyrrolidone(PVP-K30) as raw materials. The nanobelts calcined at different temperature were characterized by XRD, SEM, UV-Vis DRS and N2 adsorption-desorption isotherms. The influences of the calcination temperatures on the crystallite size, morphology, BET specific surface area and pore size of In2TiO5 nanobelts was studied. The photocatalytic activity of the as-prepared In2TiO5 nanobelts was evaluated by the photocatalytic degradation of levofloxacin (LEV) of fluoroquinolone antibiotics under the irradiation of the high pressure mercury lamp (125 W). The results show the significant effect of calcination temperature on the morphology and photocatalytic activity of In2TiO5 nanobelts. When the calcination temperature is 800℃, the In2TiO5 nanobelts prepared exhibit the best photocatalytic activity with smooth surface, the width of (552±58) nm and thickness of 140 nm. The degradation rate of LEV can be up to 95% after 60 min of irradiation.
-
-
-
[1]
[1] Pallavi Shah, Deu S. Bhange, Aparna S. Deshpande, et al. Mater. Chem. Phys., 2009,117(2/3):399-407
-
[2]
[2] Wang W D, Huang F Q, Liu C M, et al. Mater. Sci. Eng. B, 2007,139(1):74-80
-
[3]
[3] Lu J, Wang H H, Dong S J, et al. J. Alloys Compd., 2014, 617:869-876
-
[4]
[4] Pan C, Ding R, Hu Y, et al. Physica E, 2013,54:138-143
-
[5]
[5] Wang X, Fan H Q, Ren P R. Catal. Commun., 2013,31:37-41
-
[6]
[6] Zhao F, Lu Q F, Liu S W, et al. Mater. Lett., 2015,139:19-21
-
[7]
[7] Pang L X, Wang X Y, Tang X D. Solid State Sci., 2015,39:29-33
-
[8]
[8] Wu M H, Chen J, Wang C, et al. Electrochim. Acta, 2014, 132:533-537
-
[9]
[9] Zhao D D, Yu Y L, Long H J, et al. Appl. Surf. Sci., 2014, 315:247-251
-
[10]
[10] Rao R C, Yang M, Ling Q, et al. Microporous Mesoporous Mater., 2013,169:81-87
-
[11]
[11] Li W Q, Ma S Y, Luo J, et al. Mater. Lett., 2014,132:338-341
-
[12]
[12] Ding Y, Liu Y X, Parisi J, et al. Biosens. Bioelectrom., 2011,28(1):393-398
-
[13]
[13] YU Chang-Juan(于长娟), WANG Jin-Xian(王进贤), YU Chang-Ying(于长英), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(11):2013-2017
-
[14]
[14] SUN Xia(孙霞), DONG Xiang-Ting(董相廷), WANG Jin-Xian(王进贤), et al. Chem. J. Chinese Universities(高等学校化学学报), 2011,32(10):2262-2267
-
[15]
[15] Fan H T, Zhang T, Xu X J, et al. Sens. Actuator, B:Chem., 2011,153(1):83-88
-
[16]
[16] HU Yu-Yan(胡煜艳), QIAN Qing-Hua(钱清华), LIU Chang (刘畅), et al. Chinese J. Nonferrous Metals(中国有色金属学报), 2007,17(10):1711-1717
-
[17]
[17] CHEN Jie(陈捷), LIU Yan(刘延), HUANG Lei(黄磊), et al. Chem. J. Chinese Universities(高等学校化学学报), 2008, 29(7):1406-1411
-
[18]
[18] Chen Q H, Liu H L, Xin Y J, et al. Chem. Eng. J., 2014, 241:145-154
-
[1]
-
-
-
[1]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[2]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[3]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[4]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[8]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[9]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[10]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[11]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[12]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[13]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[14]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[16]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[17]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[18]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[19]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[20]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(263)
- HTML views(27)