Citation: LIU Chun-Yan, GONG Cai-Yun, ZHOU Dong-Xue, WANG Jing, LIU Jia-Shuo, LIU Zhao-Bin. Modified Jeffamine Molecular Tools for Ordered Mesoporous and Super-Micorporous Silica Microsphere Particles[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 954-960. doi: 10.11862/CJIC.2015.139 shu

Modified Jeffamine Molecular Tools for Ordered Mesoporous and Super-Micorporous Silica Microsphere Particles

  • Corresponding author: LIU Chun-Yan, 
  • Received Date: 29 January 2015
    Available Online: 30 March 2015

    Fund Project: 国家自然科学基金(No.21306063) (No.21306063)江苏省基础研究计划(No.BK20130123)资助项目。 (No.BK20130123)

  • Alow toxicity and biodegradable polymetic temlplating route to ordered mesoporous and super-micorporous silica materials is reported. By grafting stearic acid on Jeffamine ED2003 (H2N-(PO)l(EO)m(PO)n-NH2, l+n=6, m=39), a polyether amide polymeric surfactant was obtained, which has the ability of self-assembly in aqueous solution, named ED2003-fa-18. Using ED2003-fa-18 as a template, tetraethyl orthosilicate (TEOS) as inorganic silicon source, the ordered mesoporous and super-microporous silica microspheres were hydrothermally synthesized under acidic conditions at mild temperature. The resulting materials were characterized by powder X-ray diffraction (XRD), nitrogen sorption, infrared spectroscopy (IR), 1H NMR, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The influence of the templating concentration on the pore size and morphologies of the resulting materials has been investigated. The results show that the well-ordered mesoporous and super-microporous silica materials have been successfully synthesized. As the templating concentration (from 1wt% to 7wt%) increased, the pore diameter decreased obviously from mesoporous range to supermicroporous range. SEM photographs show that the as-synthesized silica materials were spherical nanoparticles of 20~30 nm, and these nanoparticles further agglomerated and formed a densely packed microspheres of 2~4 μm. In addition, ordered pore structures can be observed by the transmission electron microscopy (TEM).
  • 加载中
    1. [1]

      [1] Bagshaw S A, Hayman A R. Chem. Commun., 2000(7):533-534

    2. [2]

      [2] Mclnall M D, Scott J, Mercier L, et al. Chem. Commun., 2001(21):2282-2283

    3. [3]

      [3] Guo X J, Hou W H, Ding W P, et al. Microporous Mesoporous Mater., 2005,80:269-274

    4. [4]

      [4] Liu Y S, Lin H P, Mou C Y. Microporous Mesoporous Mater., 2004,76:203-208

    5. [5]

      [5] Zhou Y, Antonietti M. Chem. Mater., 2004,16(3):544-550

    6. [6]

      [6] Alexander K L Y, Falk H, Antony J W, et al. Microporous Mesoporous Mater., 2012,148:62-72

    7. [7]

      [7] WEI Hao(魏昊), HAN Lu(韩路), SHI Lin(石琳), et al. Chem. J. Chinese Universities(高等学校化学学报), 2011,32(3): 503-507

    8. [8]

      [8] LI Shang-Yu(李尚禹), WANG Run-Wei(王润伟), WAN Li-Feng(万利丰), et al. Chem. J. Chinese Universities(高等学 校化学学报), 2008,29(3):465-467

    9. [9]

      [9] HU Wen-Bin(胡文斌), CUI Ying-De(崔英德), YIN Guo-Qiang(尹国强), et al. CIESC J.(化工学报), 2009,60(8):2137-2140

    10. [10]

      [10] Tian R, Sun J, Zhang H, et al. Electrophoresis, 2006,27(4): 742-748

    11. [11]

      [11] GAO Feng(高峰), ZHAO Jian-Wei(赵建伟), SHUI Song(水 松), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2002,8(23):1494-1497

    12. [12]

      [12] Lin H P, Cheng Y R, Mou C Y. Chem. Mater., 1998,10: 3772

    13. [13]

      [13] Park I, Wang Z, Pinnavaia T J. Chem. Mater., 2005,17:383-386

    14. [14]

      [14] Park I, Pinnavaia T J. Microporous Mesoporous Mater., 2009, 118:239-244

    15. [15]

      [15] Hossain K Z, Sayari A. Microporous Mesoporous Mater., 2008, 114:387-394

    16. [16]

      [16] May A, Pasc A, Stebe M J, et al. Langmuir, 2012,28:9816-9824

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(0)
  • Abstract views(497)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return