Citation: LIU Chun-Yan, GONG Cai-Yun, ZHOU Dong-Xue, WANG Jing, LIU Jia-Shuo, LIU Zhao-Bin. Modified Jeffamine Molecular Tools for Ordered Mesoporous and Super-Micorporous Silica Microsphere Particles[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 954-960. doi: 10.11862/CJIC.2015.139 shu

Modified Jeffamine Molecular Tools for Ordered Mesoporous and Super-Micorporous Silica Microsphere Particles

  • Corresponding author: LIU Chun-Yan, 
  • Received Date: 29 January 2015
    Available Online: 30 March 2015

    Fund Project: 国家自然科学基金(No.21306063) (No.21306063)江苏省基础研究计划(No.BK20130123)资助项目。 (No.BK20130123)

  • Alow toxicity and biodegradable polymetic temlplating route to ordered mesoporous and super-micorporous silica materials is reported. By grafting stearic acid on Jeffamine ED2003 (H2N-(PO)l(EO)m(PO)n-NH2, l+n=6, m=39), a polyether amide polymeric surfactant was obtained, which has the ability of self-assembly in aqueous solution, named ED2003-fa-18. Using ED2003-fa-18 as a template, tetraethyl orthosilicate (TEOS) as inorganic silicon source, the ordered mesoporous and super-microporous silica microspheres were hydrothermally synthesized under acidic conditions at mild temperature. The resulting materials were characterized by powder X-ray diffraction (XRD), nitrogen sorption, infrared spectroscopy (IR), 1H NMR, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The influence of the templating concentration on the pore size and morphologies of the resulting materials has been investigated. The results show that the well-ordered mesoporous and super-microporous silica materials have been successfully synthesized. As the templating concentration (from 1wt% to 7wt%) increased, the pore diameter decreased obviously from mesoporous range to supermicroporous range. SEM photographs show that the as-synthesized silica materials were spherical nanoparticles of 20~30 nm, and these nanoparticles further agglomerated and formed a densely packed microspheres of 2~4 μm. In addition, ordered pore structures can be observed by the transmission electron microscopy (TEM).
  • 加载中
    1. [1]

      [1] Bagshaw S A, Hayman A R. Chem. Commun., 2000(7):533-534

    2. [2]

      [2] Mclnall M D, Scott J, Mercier L, et al. Chem. Commun., 2001(21):2282-2283

    3. [3]

      [3] Guo X J, Hou W H, Ding W P, et al. Microporous Mesoporous Mater., 2005,80:269-274

    4. [4]

      [4] Liu Y S, Lin H P, Mou C Y. Microporous Mesoporous Mater., 2004,76:203-208

    5. [5]

      [5] Zhou Y, Antonietti M. Chem. Mater., 2004,16(3):544-550

    6. [6]

      [6] Alexander K L Y, Falk H, Antony J W, et al. Microporous Mesoporous Mater., 2012,148:62-72

    7. [7]

      [7] WEI Hao(魏昊), HAN Lu(韩路), SHI Lin(石琳), et al. Chem. J. Chinese Universities(高等学校化学学报), 2011,32(3): 503-507

    8. [8]

      [8] LI Shang-Yu(李尚禹), WANG Run-Wei(王润伟), WAN Li-Feng(万利丰), et al. Chem. J. Chinese Universities(高等学 校化学学报), 2008,29(3):465-467

    9. [9]

      [9] HU Wen-Bin(胡文斌), CUI Ying-De(崔英德), YIN Guo-Qiang(尹国强), et al. CIESC J.(化工学报), 2009,60(8):2137-2140

    10. [10]

      [10] Tian R, Sun J, Zhang H, et al. Electrophoresis, 2006,27(4): 742-748

    11. [11]

      [11] GAO Feng(高峰), ZHAO Jian-Wei(赵建伟), SHUI Song(水 松), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2002,8(23):1494-1497

    12. [12]

      [12] Lin H P, Cheng Y R, Mou C Y. Chem. Mater., 1998,10: 3772

    13. [13]

      [13] Park I, Wang Z, Pinnavaia T J. Chem. Mater., 2005,17:383-386

    14. [14]

      [14] Park I, Pinnavaia T J. Microporous Mesoporous Mater., 2009, 118:239-244

    15. [15]

      [15] Hossain K Z, Sayari A. Microporous Mesoporous Mater., 2008, 114:387-394

    16. [16]

      [16] May A, Pasc A, Stebe M J, et al. Langmuir, 2012,28:9816-9824

  • 加载中
    1. [1]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    5. [5]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    13. [13]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    15. [15]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    18. [18]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    19. [19]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    20. [20]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

Metrics
  • PDF Downloads(0)
  • Abstract views(754)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return