Citation: MA Ting-Chun, LIU Shu-Juan, TAO Peng, XU Hang, ZHAO Qiang, XU Wen-Juan, ZHANG Ping-Lin, WANG Yi-Fan, LUO Chang-Cheng, LIEN Shui-Chih Alan, HUANG Wei. A Fluorine-Containing Phosphorescent Iridium(Ⅱ) Complex for High-Efficiency Green Organic Light-Emitting Device[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 1034-1040. doi: 10.11862/CJIC.2015.123 shu

A Fluorine-Containing Phosphorescent Iridium(Ⅱ) Complex for High-Efficiency Green Organic Light-Emitting Device

  • Corresponding author: ZHAO Qiang,  WANG Yi-Fan,  HUANG Wei, 
  • Received Date: 22 December 2014
    Available Online: 12 March 2015

    Fund Project: 国家自然科学基金青年基金(No.21201104) (No.21201104)江苏自然科学基金面上项目(No.BK20141422) (No.BK20141422)江苏省有机电子与信息显示重点实验室提升项目(No.BM2012010) (No.BM2012010)江苏高校优势学科建设工程资助项目(No.YX03001) (No.YX03001)教育部创新团队(长江学者和创新团队发展计划)(No.IRT1148) (长江学者和创新团队发展计划)(No.IRT1148)南京邮电大学引进人才启动基金(No.NY213096)资助项目。 (No.NY213096)

  • A green-light emitting iridium(Ⅱ) complex Ir(dfbppy)2(acac) with 2-(3-(2',4'-difluorophenyl)phenyl)pyridine (Hdfbppy) as C^N ligands and 2,4-pentanedione (Hacac) as an ancillary ligand was designed and synthesized for phosphorescent organic light emitting diodes, and its photophysical and electroluminescent properties were investigated. The title complex exhibits a peak emission at 520 nm, a high PL quantum yield of 71%, and a relatively short phosphorescence emission lifetime of 381 ns in CH2Cl2 at room temperature. An organic light-emitting diode using this complex with 4,4'-N,N'-dicarbazolylbiphenyl (CBP) as the host shows a green color with CIE coordinates of (0.33, 0.62), accompanied by a rather excellent performance with a maximum luminance of 68324 cd·m-2 at 7.2 V, the luminous and power efficiencies are 53 cd·A-1 and 37 lm·W-1, respectively.
  • 加载中
    1. [1]

      [1] Kido J, Kimura M, Nagai K. Science, 1995,267:1332-1334

    2. [2]

      [2] Holder E, Langeveld B M W, Schubert U S. Adv. Mater., 2005,17:1109-1121

    3. [3]

      [3] Sun Y, Giebink N C, Kanno H, et al. Nature, 2006,440:908-912

    4. [4]

      [4] Reineke S, Lindner F, Schwartz G, et al. Nature, 2009,459: 234-238

    5. [5]

      [5] Xiao L, Chen Z, Qu B, et al. Adv. Mater., 2011,23:926-952

    6. [6]

      [6] Li G J, Fleetham T, Li J. Adv. Mater., 2014,26:2931-2936

    7. [7]

      [7] Lamansky S, Djurovich P, Murphy D, et al. J. Am. Chem. Soc., 2001,123:4304-4312

    8. [8]

      [8] Li J, Djurovich P I, Alleyne B D, et al. Inorg. Chem., 2005, 44:1713-1727

    9. [9]

      [9] Chou P T, Chi Y. Chem. Eur. J., 2007,13:380-395

    10. [10]

      [10] Chi Y, Chou P T. Chem. Soc. Rev., 2010,39:638-655

    11. [11]

      [11] Chen Z Q, Bian Z Q, Huang C H. Adv. Mater., 2010,22: 1534-1539

    12. [12]

      [12] Schwartz G, Reineke S, Rosenow T C. Adv. Funct. Mater., 2009,19:1319-1333

    13. [13]

      [13] Velusamy M, Chen C H, Chou P T. Organometallics, 2010, 29:3912-3921

    14. [14]

      [14] Cheng G, Chan K T, To W P, et al. Adv. Mater., 2014,26: 2540-2546

    15. [15]

      [15] Wang X, Chang Y L, Lu J S, et al. Adv. Funct. Mater., 2014,24:1911-1927

    16. [16]

      [16] Zhang L Q, Lan T, Li M, et al. Dalton Trans., 2014,43:6500-6512

    17. [17]

      [17] Li H, Zhan H M, Wang L X. Inorg. Chem., 2014,53:810-821

    18. [18]

      [18] Tang M C, Tsang P K D, Chan M M L, et al. Angew. Chem. Int. Ed., 2013,52:446-449

    19. [19]

      [19] Baldo M A, O'Brien D F, Forrest S R. Nature, 1998,395: 151-154

    20. [20]

      [20] Lamansky S, Djurovich P, Thompson M E. Inorg. Chem., 2001,40:1704-1711

    21. [21]

      [21] Thomas K R J, Velusamy M, Lin J T, et al. Inorg. Chem., 2005,44:5677-5685

    22. [22]

      [22] Xia D B, Wang B, Chen B, et al. Angew. Chem. Int. Ed., 2014,53:1048-1052

    23. [23]

      [23] He L, Ma D X, Duan L, et al. Inorg. Chem., 2012,51:4502-4510

    24. [24]

      [24] Wallace C H C, Chan W K, Yuan Y P. Adv. Mater., 2014, 26:2368-2599

    25. [25]

      [25] Xu X B, Zhou G J, Dang J S, et al. Chem. Commun., 2014, 50:2473-2476

    26. [26]

      [26] Dumur F, Lepeltier M, Siboni H Z, et al. Adv. Opt. Mater., 2014,2:262-266

    27. [27]

      [27] Yu T Z, Cao Y, Stephen Z D, et al. RSC Adv., 2014,4:554-562

    28. [28]

      [28] Li H Y, Li T Y, Zheng Y X, et al. J. Mater. Chem. C, 2014, 2:1116-1124

    29. [29]

      [29] Tian W W, Jiang W, Sun Y M, et al. J. Mater. Chem. C, 2014,2:1104-1115

    30. [30]

      [30] Wang R J, Liu D, Li J Y, et al. Adv. Mater., 2011,23:2823-2827

    31. [31]

      [31] Yang C L, Ma D G, Qin J G, et al. Adv. Funct. Mater., 2007,17:651-661

    32. [32]

      [32] Haneder S, Como E D, Feldmann J, et al. Adv. Mater., 2008,20:3325-3330

    33. [33]

      [33] Ding J Q, Wang B, Wang L X, et al. Angew. Chem. Int. Ed., 2009,48:6664-6666

    34. [34]

      [34] Zhao Q, Liu S J, Shi M, et al. Inorg. Chem., 2006,45:6152-6160

    35. [35]

      [35] Zhao Q, Jiang C Y, Shi M, et al. Organometallics, 2006,25: 3631-3638

    36. [36]

      [36] Wong W Y, Ho C L, Gao Z Q, et al. Angew. Chem. Int. Ed., 2006,45:7800-7803

    37. [37]

      [37] Kozhevnikov V N, Zheng Y H, Clough M, et al. Chem. Mater., 2013,25:2352-2358

    38. [38]

      [38] Zhang B H, Tan G P, Lam C S, et al. Adv. Mater., 2012,24: 1873-1877

    39. [39]

      [39] Shavaleev N M, Monti F, Costa R D, et al. Inorg. Chem., 2012,51:2263-2271

    40. [40]

      [40] Fan C, Li Y H, Yang C L, et al. Chem. Mater., 2012,24: 4581-4587

    41. [41]

      [41] Tordera D, Delgado M, Orti E, et al. Chem. Mater., 2012,24: 1896-1903

    42. [42]

      [42] Rai V K, Nishiura M, Takimoto M, et al. Inorg. Chem., 2012, 51:822-835

    43. [43]

      [43] Shi C, Sun H B, Tang X, et al. Angew. Chem. Int. Ed., 2013,52:13434-13438

    44. [44]

      [44] Shi C, Sun H B, Jiang Q B, et al. Chem. Commun., 2013, 49:4746-4748

    45. [45]

      [45] Jou J H, Lin Y X, Peng S H, et al. Adv. Funct. Mater., 2014,24:555-562

    46. [46]

      [46] Brulatti P, Gildea R J, Howard J A K, et al. Inorg. Chem., 2012,51:3813-3826

    47. [47]

      [47] Yang C H, Mauro M, Polo F, et al. Chem. Mater., 2012,24: 3684-3695

    48. [48]

      [48] Coppo P, Plummer E A, De Cola L. Chem. Commun., 2004: 1774-1775

    49. [49]

      [49] Chiu Y C, Hung J Y, Chi Y, et al. Adv. Mater., 2009,21: 2221-2225

    50. [50]

      [50] Xu Q L, Wang C C, Li T Y, et al. Inorg. Chem., 2013,52: 4916-4925

    51. [51]

      [51] Nonoyama M. Bull Chem. Soc. Jpn., 1974,7:767-768

    52. [52]

      [52] Zhou G J, Wang Q, Ho C L, et al. Chem. Asian J., 2008,3: 1830-1841

    53. [53]

      [53] Jung S O, Zhao Q H, Park J W, et al. Org. Electron., 2009, 10:1066-1073

    54. [54]

      [54] Zhou G J, Ho C L, Wong W Y, et al. Adv. Funct. Mater., 2008,18:499-511

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    12. [12]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(2)
  • Abstract views(413)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return