Citation: GUO Xing-Zhong, SHAN Jia-Qi, DING Li, YU Huan, ZHANG Xiao-Qi, YANG Hui. Preparation and Characterization of Hierarchically Porous Silica Monoliths[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 635-640. doi: 10.11862/CJIC.2015.118 shu

Preparation and Characterization of Hierarchically Porous Silica Monoliths

  • Received Date: 7 October 2014
    Available Online: 19 January 2015

    Fund Project: 国家自然科学基金(No.51372225) (No.51372225)浙江省自然基金(No.LY13B010001)资助项目。 (No.LY13B010001)

  • Hierarchically porous SiO2 monoliths were prepared via sol-gel process accompanied by phase separation with tetramethoxysilane (TMOS) as precursor, poly (ethylene oxide) (PEO) as phase separation inducer, propylene oxide(PO) as gelation agent, 0.01 mol·L-1 hydrochloric acid as catalyst, and twelve sodium dodecyl sulfate(SDS) as mesopore forming agent. The resultant monoliths were characterized by differential thermal analysis (DTA), thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption/desorption analysis, and the effects of SDS on the macroporous and mesoporous structure of the monoliths were investigated. The results show that the SDS uniformly distributes into the skeletons in the form of micelles, which leads to the formation of mesopores. When SDS is 0.21 g, the optimum hierarchically porous structure is obtained with macropore size of 1~3 μm, mesopore size of 4~5 nm, and BET specific surface area as high as 650 m2·g-1. After heat treatment at 800℃, macroporous structure and mesopores on the skeleton basically remain, and the BET specific surface area still maintains at 421 m2·g-1, which indicates good thermal stability.
  • 加载中
    1. [1]

      [1] Amatani T, Nakanishi K, Hirao K, et al. Chem. Mater., 2005, 17:2114-2119

    2. [2]

      [2] Nakanishi K, Tanaka N. Acc. Chem. Res., 2007,40:863-873

    3. [3]

      [3] Svec F, Huber C G. Anal. Chem., 2006,78:2100-2107

    4. [4]

      [4] LI Wen-Yan(李文彦). Thesis for the Doctorate of Zhejiang University(浙江大学博士论文). 2013.

    5. [5]

      [5] BAO Xiao-Ling(鲍笑岭), XU Xu(许旭). Chinese J. Anal. Chem.(分析化学), 2005,33(11):1653-1658

    6. [6]

      [6] GUO Xing-Zhong(郭兴忠), LI Wen-Yan(李文彦), ZHU Yang (朱阳), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2013, 29(3):646-652

    7. [7]

      [7] LI Mei(李梅), SUN Hai-Yan(孙海燕), LIU Xiu-Ling(刘秀琳), et al. J. Shandong Univ.(山东大学学报), 2007,42(3):47-51

    8. [8]

      [8] XU Ru-Ren(徐如人), PANG Wen-Qin(庞文琴), YU Ji-Hong (于吉红), et al. Molecular Sieve and Porous Material Chemistry (分子筛与多孔材料化学). Beijing: Science press, 2004.

    9. [9]

      [9] CHEN Zong-Qi(陈宗淇), WANG Guang-Xin(王光信), XU Gui-Ying(徐桂英). Colloid and Interface Chemistry(胶体与界面化学). Beijing: Higher Education Press, 2001.

    10. [10]

      [10] LI Zhong-Chun(李中春), ZHOU Quan-Fa(周全法). Rare Metal. Mat. Eng.(稀有金属材料与工程), 2010,39(6):1050-1053

    11. [11]

      [11] SONG Gen-Ping(宋根萍), GUO Rong(郭荣). J. Yangzhou Teach. Coll.(扬州师院学报), 1995,15(4):31-36

  • 加载中
    1. [1]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    2. [2]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    3. [3]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    4. [4]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    5. [5]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    6. [6]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    10. [10]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    19. [19]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    20. [20]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

Metrics
  • PDF Downloads(0)
  • Abstract views(581)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return