Citation: JI Wen-Xu, WU Di, YANG Rong, DING Wei-Ping, PENG Lu-Ming. MoO3 Nanobelts/Reduced Graphene Oxide (RGO) Composites as a High-Performance Anode Material for Lithium Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 659-665. doi: 10.11862/CJIC.2015.111 shu

MoO3 Nanobelts/Reduced Graphene Oxide (RGO) Composites as a High-Performance Anode Material for Lithium Ion Batteries

  • Corresponding author: PENG Lu-Ming, 
  • Received Date: 18 November 2014
    Available Online: 22 January 2015

    Fund Project: 国家重大科学研究计划青年科学家专题(No.2013CB934800) (No.2013CB934800)国家自然科学基金(No.21222302)资助项目。 (No.21222302)

  • MoO3 nanobelts/RGO composites were obtained through a facile and efficient hydrothermal procedure by using organic compound sodium salicylate as both structure-directing agent and reducing agent. The crystal structure, morphologies and electrochemical performances of the as-prepared samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS). The hybrid material shows a high specific capacity of 1 000 mAh·g-1 with a good cycling stability as an anode material for lithium ion batteries, which has a much enhanced performance compared to bare MoO3 nanobelts.
  • 加载中
    1. [1]

      [1] Kang B, Ceder G. Nature, 2009,458:190-193

    2. [2]

      [2] Tarascon J M, Armand M. Nature, 2001,414:359-367

    3. [3]

      [3] Kang K, Meng Y S, Bréger J, et al. Science, 2006,311:977-980

    4. [4]

      [4] ZHANG Huan(张欢), QI Lu(其鲁), GAO Xue-Ping(高学平), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(9): 1539-1543

    5. [5]

      [5] Poizot P, Laruelle S, Grugeon S, et al. Nature, 2000,407:496-499

    6. [6]

      [6] Taberna P L, Mitra S, Poizot P, et al. Nat. Mater., 2006,5: 567-573

    7. [7]

      [7] Nam K T, Kim D W, Yoo P J, et al. Science, 2006,312:885-888

    8. [8]

      [8] Wang B, Chen J S, Wu H B, et al. J. Am. Chem. Soc., 2011, 133:17146-17148

    9. [9]

      [9] LIU Xiao-Feng(刘晓峰), MI Chang-Huan(米常焕), ZHANG Wen-Qing(张文庆). Chinese J. Inorg. Chem.(无机化学学报), 2014,30(2):242-250

    10. [10]

      [10] Gao J, Lowe M A, Abruna H D. Chem. Mater., 2011,23:3223-3227

    11. [11]

      [11] Ji W, Shen R, Yang R, et al. J. Mater. Chem. A, 2014,2:699-704

    12. [12]

      [12] XUE Hai-Rong(薛海荣), ZHAO Jian-Qing(赵建庆), WANG Tao(王涛), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(8):1601-1608

    13. [13]

      [13] Zhao G, Zhang N, Sun K. J. Mater. Chem. A, 2013,1:221-224

    14. [14]

      [14] Hassan M F, Guo Z P, Chen Z, et al. J. Power Sources, 2010,195:2372-2376

    15. [15]

      [15] Tao T, Glushenkov A M, Zhang C F, et al. J. Mater. Chem., 2011,21:9350-9355

    16. [16]

      [16] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306:666-669

    17. [17]

      [17] Chae H K, Siberio-Perez D Y, Kim J, et al. Nature, 2004,427: 523-527

    18. [18]

      [18] Zhang Y, Tan Y W, Stormer H L, et al. Nature, 2005,438: 201-204

    19. [19]

      [19] Mcallister M J, Li J L, Adamson D H, et al. Chem. Mater., 2007,19:4396-4404

    20. [20]

      [20] Wang H L, Cui L F, Yang Y A, et al. J. Am. Chem. Soc., 2010,132:13978-13980

    21. [21]

      [21] Zhu X J, Zhu Y W, Murali S, et al. Acs Nano, 2011,5:3333-3338

    22. [22]

      [22] Zhou G M, Wang D W, Li F, et al. Chem. Mater., 2010,22: 5306-5313

    23. [23]

      [23] Wu Z S, Ren W C, Wen L, et al. Acs Nano, 2010,4:3187-3194

    24. [24]

      [24] Paek S M, Yoo E, Honma I. Nano Lett., 2009,9:72-75

    25. [25]

      [25] Wang D H, Choi D W, Li J, et al. Acs Nano, 2009,3:907-914

    26. [26]

      [26] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80: 1339-1339

    27. [27]

      [27] Yang X F, Lu C Y, Qin J L, et al. Mater. Lett., 2011,65: 2341-2344

    28. [28]

      [28] He H, Klinowski J, Forster M, et al. Chem. Phys. Lett., 1998, 287:53-56

    29. [29]

      [29] Lerf A, He H, Forster M, et al. J. Phys. Chem. B, 1998,102: 4477-4482

    30. [30]

      [30] Cai W, Piner R D, Stadermann F J, et al. Science, 2008, 321:1815-1817

    31. [31]

      [31] Gao W, Alemany L B, Ci L, et al. Nat. Chem., 2009,1:403-408

    32. [32]

      [32] Mai L Q, Hu B, Chen W, et al. Adv. Mater., 2007,19:3712-3716

    33. [33]

      [33] Guo X, Fan Q, Yu L, et al. J. Mater. Chem. A, 2013,1:11534-11538

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(0)
  • Abstract views(441)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return