Citation: LIU Hai-Rui, FANG Li-Yu, JIA Wei, JIA Hu-Sheng. Fabrication of ZnS Nanoparticles with Enhanced Photocatalytic Activity by Hydrothermal Method[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 459-464. doi: 10.11862/CJIC.2015.074 shu

Fabrication of ZnS Nanoparticles with Enhanced Photocatalytic Activity by Hydrothermal Method

  • Corresponding author: LIU Hai-Rui, 
  • Received Date: 19 June 2014
    Available Online: 5 January 2015

    Fund Project: 国家自然科学基金(NO.50432030、U1304110)资助项目。 (NO.50432030、U1304110)

  • Under the role of CTAB, different size ZnS spherical-like particles were fabricated by hydrothermal method. The crystal structure, morphology, composition and optical property of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray energy spectrum (EDS), UV-Vis absorption spectrum and photoluminescence spectrum (PL). Photocatalytic activities were evaluated by degradation of MB solution. The results show that ZnS nanoparticles were formed by aggregation of crystal nucleus under the role of CTAB. With the increase of reaction time, the size of ZnS particles increased to 500 nm, however, the crystal structure of product has no change. With the increase of particle size, the UV-Vis absorption peak of samples shifted from 418 to 362 nm and the PL intensity further increased. Finally, the photocatalytic activity presented that fabricated ZnS nanoparticles with reaction time 12 h showed best photcatalytic performance.
  • 加载中
    1. [1]

      [1] Suyver J F, Wuister S F, Kelly J J, et al. Nano Lett., 2001,1 (8):429-433

    2. [2]

      [2] Zhang Q Y, Su K, Chan-Park M B, et al. Acta Biomater., 2014,10(3):1167-1176

    3. [3]

      [3] Zhang S J. Ceram. Int., 2014,40(3):4553-4557

    4. [4]

      [4] Park J Y, Park S J, Lee J H, et al. Mater. Lett., 2014,121:97 -100

    5. [5]

      [5] Sun J Q, Hao E C, Sun Y P, et al. Thin Solid Films, 1998, 327:528-531

    6. [6]

      [6] Yu W, Fang P F, Wang S J, et al. Appl. Surf. Sci., 2009,255 (11):5709-5713

    7. [7]

      [7] Hemant P S, Diptesh P, Narendra P, et al. Mater. Lett., 2008,62(17/18):2700-2703

    8. [8]

      [8] Saoudi R, Moussaoui M, Tonchev S, et al. J. Quant. Spectrosc. Radiat. Transfer, 2012,113(18):2499-2502

    9. [9]

      [9] Po C L, Chi C H, Tai C L. J. Solid State Chem., 2012,194: 282-285

    10. [10]

      [10] Nagamani K, Revathi N, Prathap P, et al. Curr. Appl. Phys., 2012,12(2):380-384

    11. [11]

      [11] Zhang W H, Zhang W D. Mater. Lett., 2013,98(1):5-7

    12. [12]

      [12] Dong F F, Guo Y P, Jiang K, et al. Mater. Lett., 2013,97:59 -63

    13. [13]

      [13] Wang X J, Wan F Q, Jiang K, et al. Mater. Charact., 2008, 59:1765-1770

    14. [14]

      [14] WU Xiao(吴晓), WANG Hao(汪浩). Chinese J. Inorg. Chem. (无机化学学报), 2010,26(3):453-458

    15. [15]

      [15] Min X B, Yuan C Y, Chai L Y, et al. Miner. Eng., 2013,40: 16-23

    16. [16]

      [16] Mehta S K, Kumar S J. Mater. Chem. Phys., 2011,131(1/2): 94-101

    17. [17]

      [17] Michael B, Katarzyna M, Adam S, et al. Sol. Energy Mater. Sol. Cells, 2009,93(5):662-666

    18. [18]

      [18] Ma H C, Han J H, Fu Y H, et al. Appl. Catal. B: Environ., 2011,102(3/4):417-423

    19. [19]

      [19] Tran T Q H, Ngo D T, Stephen M, et al. Opt. Mater., 2011, 33(3):308-314

    20. [20]

      [20] Sadasivam S, Rajamanickam T S, Nagarajan G S, et al. Superlattices Microstruct., 2012,51(1):73-79

    21. [21]

      [21] Zhang Y, Dang X Y, Jin J, et al. Appl. Surf. Sci., 2010,256 (22):6871-6875

    22. [22]

      [22] Nam V, Tuan N T, Trung D Q, et al. Mater. Lett., 2010,64 (14):1650-1652

    23. [23]

      [23] ZHANG Hai-Ming(张海明), WANG Zhi-Jian(王之建), ZHANG Li-Gong(张力功) et al. J. Inorg. Mater.(无机材料 学报), 2002,17(6):1148-1150

    24. [24]

      [24] Pradhan N, Peng X G. J. Am. Chem. Soc., 2007,129:3339-3347

    25. [25]

      [25] Shanmugam N, Cholan S, Kanndasan N, et al. Solid State Sci., 2014,28:55-60

    26. [26]

      [26] Panthi G, Barakat N A M, Park M, et al. J. Ind. Eng. Chem., 2014,2:35-39

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    4. [4]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    5. [5]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    8. [8]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    9. [9]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    12. [12]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    13. [13]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    14. [14]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    15. [15]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    20. [20]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

Metrics
  • PDF Downloads(1)
  • Abstract views(481)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return