Citation: JI Ke-Ming, MENG Fan-Hui, GAO Yuan, LI Zhong. Solution Combustion Prepared Ni-Based Catalysts and Their Catalytic Performance for Slurry Methanation[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 267-274. doi: 10.11862/CJIC.2015.050 shu

Solution Combustion Prepared Ni-Based Catalysts and Their Catalytic Performance for Slurry Methanation

  • Corresponding author: LI Zhong, 
  • Received Date: 4 August 2014
    Available Online: 7 November 2014

    Fund Project: 国家"973"计划(No.2012CB723105) (No.2012CB723105)山西省青年基金(No.2013021007-4) (No.2013021007-4)中国博士后科学基金(2013M541210) (2013M541210)太原理工大学校青年团队基金(No.2013T091)资助项目 (No.2013T091)

  • Ni-Al2O3, Ni-ZrO2, Ni-La2O3 and Ni-CeO2 catalysts were prepared by solution combustion method using Al(NO3)3, ZrO(NO3)2, La(NO3)3 and Ce(NO3)3 (mixed with Ni(NO3)2 and urea in aqueous solution) as the support precursor, respectively. The COmethanation performances of catalysts were studied in slurry-bed reactor, and the catalysts were characterized by low temperature N2 adsorption-desorption, XRD, SEM, TEM, H2-TPRand H2 chemsorption. The results show that the combustion preparation process of Ni-Al2O3 catalyst using Al(NO3)2 as the precursor is stable for long-duration(up to 23 s) and the catalyst has larger surface area (468 m2·g-1) and metal surface area (10 m2·g-1), smaller Ni particle (3~5 nm), excellent dispersion of Ni, and the catalyst has good catalytic performance, whose COconversion and CH4 selectivity are 94% and 95%, respectively, and no catalyst deactivation is observed in 100h. The preparation process for catalysts using ZrO(NO3)2 and La(NO3)3 as precursors does not show obvious flame and burning time is also shorter (12 s and 5 s), the surface areas, metal surface areas and catalytic performances are lower than that of Ni-Al2O3 while that for the catalyst using Ce(NO3)2 as the precursor has high intensity combustion. The catalyst obtained from Ce(NO3)2 precursor shows lower surface area (22 m2·g-1) and metal surface area (5 m2·g-1), larger Ni particle and worse dispersion of Ni and the worst methanation catalytic performance with COconversion and CH4 selectivity of 41% and 89%, respectively.
  • 加载中
    1. [1]

      [1] Kopyscinski J, Schildhauer T J, Biollaz S M A. Fuel, 2010,89 (8):1763-1783

    2. [2]

      [2] Zhang J, Bai Y, Zhang Q, et al. Fuel, 2014,132:211-218

    3. [3]

      [3] Gao J, Wang Y, Ping Y, et al. RSC Adv., 2012,2(6):2358-2368

    4. [4]

      [4] CUI Xiao-Xi(崔晓曦), FAN Hui(范辉), ZHENG Hua-Yan(郑华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(3):495-502

    5. [5]

      [5] CUI Xiao-Xi(崔晓曦), MENG Fan-Hui(孟凡会), HE Zhong (何忠), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 30(2):277-283

    6. [6]

      [6] Zhao A, Ying W, Zhang H, et al. Catal. Comun., 2012,17: 34-38

    7. [7]

      [7] Tada S, Shimizu T, Kameyama H, et al. Int. J. Hydrogen Energy, 2012,37(7):5527-5531

    8. [8]

      [8] Cai M, Wen J, Chu W, et al. J. Nat. Gas Chem., 2011,20 (3):318-324

    9. [9]

      [9] SONG Huan-Ling(宋焕玲), YANG Jian(杨建), ZHAO Jun(赵军), et al. Chin. J. Catal.(催化学报), 2010,31(1):21-23

    10. [10]

      [10] Meng F H, Zhong P Z, Li Z, et al. J. Chem, 2014,2014:1-7

    11. [11]

      [11] MENG Fan-Hui(孟凡会), LIU Jun(刘军), LI Zhong(李忠), et al. J. Fuel Chem. Technol.(燃料化学学报), 2014,42(2): 231-237

    12. [12]

      [12] Pfeil T L, Pourpoint T L, Groven L J. Int. J. Hydrogen Energy, 2014,39(5):2149-2159

    13. [13]

      [13] Dinka P, Mukasyan A S. J. Phys. Chem. B, 2005,109(46): 21627-21633

    14. [14]

      [14] Sharma S, Hu Z, Zhang P, et al. J. Catal., 2011,278(2):297-309

    15. [15]

      [15] Colussi S, Gayen A, Llorca J, et al. Ind. Eng. Chem. Res., 2012,51(22):7510-7517

    16. [16]

      [16] González-Cortés S L, Imbert F E. Appl. Catal. A, 2013,452: 117-131

    17. [17]

      [17] Jung C H, Jalota S, Bhaduri S B. Mater. Lett., 2005,59(19/20):2426-2432

    18. [18]

      [18] LU Chang(路长), ZHOU Jian-Jun(周建军), LIN Qi-Zhao(林其钊), et al. J. Combust. Sci. Technol.(燃烧科学与技术), 2005,11(1):41-46

    19. [19]

      [19] WU Shu-Rong(吴淑荣), XIONG Wei-Miao(熊为淼), HE Ming-An(何明安), et al. J. Northwest Univ.(西北大学学报), 1981,22(3):32-38

    20. [20]

      [20] Zou X, Wang X, Li L, et al. Int. J. Hydrogen Energy, 2010, 35(22):12191-12200

    21. [21]

      [21] Yang J, Wang X, Li L, et al. Appl. Catal. B, 2010,96(1-2): 232-237

    22. [22]

      [22] Koo K Y, Roh H-S, Seo Y T, et al. Int. J. Hydrogen Energy, 2008,33(8):2036-2043

    23. [23]

      [23] Zhang J, Xu H, Jin X, et al. Appl. Catal. A, 2005,290(1-2): 87-96

    24. [24]

      [24] Nagai M, Zahidul A M, Kunisaki Y, et al. Appl. Catal. A, 2010,383(1-2):58-65

    25. [25]

      [25] Kam R, Selomulya C, Amal R, et al. J. Catal., 2010,273(1): 73-81

    26. [26]

      [26] LIU Na(刘娜), DU Xia-Ru(杜霞茹), YUAN Zhong-Shan(袁中山), et al. J. Chinese Soc. Rare Earths(中国稀土学报), 2005,23(1):26-30

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(170)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return