Citation: XIAO Zhen-Kun, WU Lei, MI Rao, FANG Qing, SONG Xiao-Lan, LU Xiao-Ying, WENG Jie. Effect of Carbon Nanotubes on the Mechanical Properties of Carbon Nanotubes/Hydroxyapatite Composites[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 114-120. doi: 10.11862/CJIC.2015.036 shu

Effect of Carbon Nanotubes on the Mechanical Properties of Carbon Nanotubes/Hydroxyapatite Composites

  • Corresponding author: LU Xiao-Ying, 
  • Received Date: 23 July 2014
    Available Online: 30 October 2014

    Fund Project: 973项目(No.2012CB933602) (No.2012CB933602)国家自然科学基金(No.51172188) (No.51172188)西南交通大学国创项目(No.201410613005) (No.201410613005)工程实践项目(No.ZD201314014)资助 (No.ZD201314014)

  • In order to overcome the brittleness of hydroxyapatite (HA) bioceramics, it is suggested to be an efficient approach to fabricate carbon nanotubes (CNTs)/HA composites by compounding CNTs with HA for the clinic applications in bone tissue engineering. CNTs/HA composites had been fabricated by three different methods, that was CNTs dispersing into HA with the addition of surfactant, CNTs coprecipitating with HA via an acid-base reaction, and HA growing on CNTs by a mineralization approach. The results showed that CNTs/HA composites exhibited a certain plastic deformation under the compress load condition and the compressive mechanical properties had been increased owing to the existence of CNTs in these composites. For the uniform distribution and network array of CNTs with slightly damaged structure in HA matrix and good interfacial bonding between CNTs and HA, CNTs/HA composites prepared by CNTs dispersing into HA with the addition of surfactant have the best compressive mechanical properties. However, CNTs/HA composites prepared by CNTs coprecipitating with HA via an acid-base reaction have the worst compressive mechanical properties for the uneven distribution and aggregating array of CNTs with greatly damaged structure in HA matrix.
  • 加载中
    1. [1]

      [1] Yuan H, Li Y, De Bruijn J D, et al. Biomaterials, 2000,21 (12):1283-1290

    2. [2]

      [2] Chang B S, Hong K S, Youn H J, et al. Biomaterials, 2000, 21(12):1291-1298

    3. [3]

      [3] Sous M, Bareille R, Rouais F, et al. Biomaterials, 1998,19 (23):2147-2153

    4. [4]

      [4] LIU Cui-Lian(刘翠莲), TANG Rui-Kang(唐睿康). Chinese J. Inorg. Chem.(无机化学学报), 2014,30(1):1-9

    5. [5]

      [5] Ruys A J, Wei M, Sorrell C C, et al. Biomaterials, 1995,16 (5):409-415

    6. [6]

      [6] Wang J, Shaw L L. Biomaterials, 2009,30(34):6565-6572

    7. [7]

      [7] Silva V V, Domingues R Z, Lameiras F S. Compos. Sci. Technol., 2001,61(2):301-310

    8. [8]

      [8] Iijima S. Nature, 1991,354(6348):56-58

    9. [9]

      [9] Odom T W, Huang J L, Kim P, et al. Nature, 1998,391(6662): 62-64

    10. [10]

      [10] Inoue S, Ichikuni N, Suzuki T, et al. J. Phys. Chem. B, 1998,102(24):4689-4692

    11. [11]

      [11] Che R, Peng L M, Duan X F, et al. Adv. Mater., 2004,16(5): 401-405

    12. [12]

      [12] XU Hua-Ming(徐化明), LI Dan(李聃), LIANG Ji(梁吉). Chinese J. Inorg. Chem.(无机化学学报), 2005,21(9):1353-1356

    13. [13]

      [13] Jiang Q, Qu M Z, Zhou G M, et al. Mater. Lett., 2002,57(4): 988-991

    14. [14]

      [14] Chiu H Y, Hung P, Postma H W C, et al. Nano Lett., 2008, 8(12):4342-4346

    15. [15]

      [15] LI Hao-Peng(李浩鹏), ZHANG Xiao-Yan(张晓艳), CUI Xiao-Li(崔晓莉). Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(11):1935-1938

    16. [16]

      [16] Yakobson B, Avouris P. Mechanical Properties of Carbon Nanotubes. Berlin: Springer Berlin Heidelberg, 2001:287-327

    17. [17]

      [17] Curtin W A, Sheldon B W. Mater. Today, 2004,7(11):44-49

    18. [18]

      [18] SUN Kang-Ning(孙康宁), LI Ai-Min(李爱民), YIN Yan-Sheng(尹衍升), et al. Chinese J. Biomed. Eng.(中国生物医 学工程学报), 2004,23(6):573-578

    19. [19]

      [19] LU Zhi-Hua(卢志华), SUN Kang-Ning(孙康宁), ZHAO Zhong-Fan(赵中帆). J. Chinese Ceram. Soc.(硅酸盐学报), 2007,35(2):212-217

    20. [20]

      [20] PU Hui(蒲辉), LI Jun(李钧), LI Xiao-Li(李晓莉), et al. J. Clin. Rehabil. Tissue Eng. Research(中国组织工程研究 与临床康复), 2011,15(38):7109-7112

    21. [21]

      [21] Osorio A G, dos Santos L A, Bergmann C P. Rev. Adv. Mater. Sci., 2011,27:58-63

    22. [22]

      [22] Wang J, Kou H, Liu X J. Ceram. Int., 2007,33(5):719-722

    23. [23]

      [23] An J W, You D H, Lim D S. Wear, 2003,255(1):677-681

    24. [24]

      [24] Hamon M A, Hu H, Bhowmik P, et al. Chem. Phys. Lett., 2001,347(1):8-12

    25. [25]

      [25] Rosca I D, Watari F, Uo M, et al. Carbon, 2005,43(15): 3124-3131

    26. [26]

      [26] LU Xiao-Ying(卢晓英). Thesis for the Masterate of Sichuan University(四川大学硕士论文). 2003.

    27. [27]

      [27] ZHAO Bao-Lin(赵宝林), LUO Min(罗民), MA Hong-Shun (马洪顺). Beijing Biomed. Eng.(北京生物医学工程), 2004, 23(2):143-146

    28. [28]

      [28] Jenkins R, Snyder R L. Introduction to X-ray Powder Diffra-ctometry. New York: John Wiley & Sons, 1996:47-94

    29. [29]

      [29] MU Bai-Chun(穆白春). Strength of Ceramic Materials(陶瓷 材料的强韧化). Beijing: Metallurgical Industry Press, 2002: 35-48

    30. [30]

      [30] Datsyuk V, Kalyva M, Papagelis K, et al. Carbon, 2008,46 (6):833-840

    31. [31]

      [31] Meng Y H, Tang C Y, Tsui C P. J. Mater. Sci. Mater. Med., 2008,19(1):75-81

    32. [32]

      [32] QIU Tian(邱添), HUANG Jing-Jing(黄静静), ZHANG Miao (张苗), et al. J. Inorg. Mater.(无机材料学报), 2012,28(1): 91-96

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(0)
  • Abstract views(317)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return