Citation: ZHANG Jun-Min, TAN Zhi-Long, WANG Chuan-Jun, BI Jun, YI Wei, SHENG Yue, GUAN Wei-Ming, WEN Ming. Effect of Carbon Support Pretreatment on Structure and Performance of Pt/C Electrocatalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 140-146. doi: 10.11862/CJIC.2015.022 shu

Effect of Carbon Support Pretreatment on Structure and Performance of Pt/C Electrocatalysts

  • Corresponding author: WEN Ming, 
  • Received Date: 12 August 2014
    Available Online: 20 October 2014

    Fund Project: 国家地区科学基金(No.51262015) (No.51262015)云南省基金(No.2011FB125)资助项目. (No.2011FB125)

  • Pt/C catalysts were prepared using a new modified polyol method with different heat treatment temperatures of Vulcan XC-72 carbon support. The oxygen containing functional group and the specific surface area of carbon black were characterized by pH meter and physical adsorption instrument. The composition, morphology and the electrochemical properties of the Pt/C catalyst were characterized by coupled plasma atomic emission spectroscopy, Transmission electron microscopy, X-ray diffraction and cyclic voltammograms, respectively. The results indicate that the Pt/C catalyst with 400 ℃ heat treatment for carbon black has an electrochemical specific surface area of 83 m2·g-1, and the quality of the current density of 49.03 A·g-1, while the corresponding parameters for imported commercial JM 20% Pt/C catalyst are 77 m2·g-1 and 11.13 A·g-1, respectively. The Pt loading in the present work is decreased by 3wt%~4wt% and the electric catalytic activity for the catalyst obtained in this work is better than that of commercial JM 20% Pt/C catalyst.
  • 加载中
    1. [1]

      [1] YI Bao-Lian(衣宝廉). Fuel Cell Efficiency, Environmental Friendly Generator(燃料电池-高效,环境友好的发电方式). Beijing: Chemical Industry Press, 2000:302

    2. [2]

      [2] YI Bao-Lian(衣宝廉). Fuel Cell: Principle, Technology, Application(燃料电池-原理·技术·应用). Beijing: Chemical Industry Press, 2003:289

    3. [3]

      [3] Lee J Y, Yun Y H, Park S W, et al. Microporous Mesoporous Mater., 2010,35(1):1-7

    4. [4]

      [4] Zhou W, Zhou Z, Song S, et al. Appl. Catal. B, 2003,46(3): 273-285

    5. [5]

      [5] Jung Ju Hae , Park Hyang Jin, Kim Junbom, et al. J. Power Sources, 2014,248(2):1156-1162

    6. [6]

      [6] Shao Y Y, Yin G P, Wang J J, et al. J. Power Sources, 2006, 161(3):47-53

    7. [7]

      [7] Gasteiger H A, Kocha S S, et al. Appl. Catal. B: Environ., 2005,56(4):9-35

    8. [8]

      [8] Liang D, Gao J, Wang J H, et al. Catal. Commun., 2009,10 (12):1586-1590

    9. [9]

      [9] Liang D, Gao J, Sun H, et al. Appl. Catal. B: Environ., 2011, 106(3):423-432

    10. [10]

      [10] ZHANG Jun-Min(张俊敏), ZHU Fang-Fang(朱芳芳), LIU Wei-Ping(刘伟平), et al. Rare Metal Mater. Eng.(稀有金属 材料与工程), 2013,42(9):1941-1944

    11. [11]

      [11] Sheng E, Bradley R H, Freakley P K. J. Mater. Sci., 1996, 30(21):5651-5655

    12. [12]

      [12] Park S J, Kim J S. J. Adhes. Sci. Technol., 2001,15(12): 1443-1452

    13. [13]

      [13] WANG Dao-Hong(王道宏), ZHANG Ji-Yan(张继炎), WANG Ri-Jie(王日杰),et al. J. Tianjin University(天津大学学报), 2004,37(1):10-14

    14. [14]

      [14] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties. New York: Wiley Chichester, 1988:385

    15. [15]

      [15] ZHOU Zhi-Min(周志敏), SHAO Zhi-Gang(邵志刚), YI Bao- Lian(衣宝廉). Battery(电池), 2009,39(4):177-180

    16. [16]

      [16] ZENG Li-Zen(曾丽珍), LI Wei(李伟), LI Wei-Shan(李伟善). The 26th Annual Meeting of The New Energy and Chemical Breakout Anthology, Chinese Chemical Society(中国化学会 第26届学术年会新能源与能源化学分会场论文集). Tianjin, 2008:567-572

    17. [17]

      [17] ZHOU Hong-Ru(周红茹), TANG Hou-Wen(唐厚闻), CHEN Xue-Song(陈雪松), et al. Shanghai Auto(上海汽车), 2013, 10(7):6-8

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    3. [3]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    7. [7]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    8. [8]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    9. [9]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    10. [10]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    16. [16]

      Mei-Xia Yang Zhen-Hong He Long-Rui Wang You-Xing Yang . Route for Turning Waste CH4 and CO2 into Valuable Products: Reforming for Syngas. University Chemistry, 2026, 41(2): 197-207. doi: 10.12461/PKU.DXHX202503012

    17. [17]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    18. [18]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(0)
  • Abstract views(1176)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return