Citation: AN Ting, ZHAO Feng-Qi, MA Hai-Xia, REN Xiao-Ning, ZHAO Ning-Ning, WANG Qiong, YANG Yong. MnO2 Nanotube and Its Super Thermite: Preparation and Their Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 97-102. doi: 10.11862/CJIC.2015.010 shu

MnO2 Nanotube and Its Super Thermite: Preparation and Their Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine

  • Corresponding author: ZHAO Feng-Qi, 
  • Received Date: 20 July 2014
    Available Online: 25 September 2014

    Fund Project: 国家自然科学基金(No.21173163) (No.21173163)燃烧与爆炸技术重点实验室基金(No.9140C350302120C3501)资助项目 (No.9140C350302120C3501)

  • The nano-MnO2 was prepared by hydrothermal method, and then super thermite Al/MnO2 was prepared by ultrasonic dispersion method using nano-MnO2 and Al nanoparticles as raw materials. The physical phase, composition, morphology and structure of products were characterized by X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS). The catalytic effect of MnO2 nanotube and the super thermite on the thermal decomposition of cyclotrimethylene trinitramine were investigated by differential scanning colorimetry (DSC). The results indicate that nano-MnO2 is in tubular structure, and the globose nano-Al particles are homodispersed on the surface of MnO2 nanotube. MnO2 nanotube and its super thermite influence the thermal decomposition behavior and decomposition process of cyclotrimethylene trinitramine. They can change the primary decomposition of liquid phase to the reaction of secondary gas phase and can change the shape of main decomposition peak obviously.
  • 加载中
    1. [1]

      [1] Dreizin E L. Prog. Energy Combust. Sci., 2009(35):141-167

    2. [2]

      [2] Pamela J, Kaste B. The Amptiac Newsletter, 2004,8(4):85-89

    3. [3]

      [3] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005(156):164-169

    4. [4]

      [4] Mei J, Halldeam R D, Xiao P. Scr. Mater., 1999,41(5):541-548

    5. [5]

      [5] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), XIAO Li-Bai (肖立柏). Chin. J. Explos. Propellants(火炸药学报), 2010, 33(3):55-62

    6. [6]

      [6] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), ZHANG Ping-Fei (张平飞). Nanosci. Technol.(纳米科技), 2009,6(36):60-67

    7. [7]

      [7] Walker J D. Thesis for the Doctorate of Georgia Institute of Technology. 2007.

    8. [8]

      [8] Mei J, Halldeam R D, Xiao P. Scr. Mater., 1999,41(5):541-548

    9. [9]

      [9] Kim Soo H. Adv. Mater., 2004,16(20):1821-1825

    10. [10]

      [10] Umbrajkar S M, Schoenitz M, Dreizin E L. Propellants Explos. Pyrotech., 2006,31(5):382-389

    11. [11]

      [11] Umbrajkar S M, Seshadri S, Schoenitz M, et al. J. Propuls Power, 2008,24(2):192-198

    12. [12]

      [12] Schoenitz M, Umbrajkar S M, Dreizin E L. J. Propuls Power, 2007,23(4):683-687

    13. [13]

      [13] Schoenitz Mirko, Ward Trent S, Dreizin Edward L. Proc. Combust. Inst., 2005(30):2071-2078

    14. [14]

      [14] Bockmon B S, Pantoya M L, Son S F, et al. J. Appl. Phys., 2005,98(6):064903(7 pages)

    15. [15]

      [15] Badiola C, Schoenitz M, ZHU Xiao-Ying, et al. J. Alloys Compd., 2009,488:386-391

    16. [16]

      [16] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005,156:164-169

    17. [17]

      [17] Weismiller M R, Malchi J Y, Yetter R A, et al. Proc. Combust. Inst., 2009,32(2):1895-1903

    18. [18]

      [18] AN Ting(安 亭), ZHAO Feng-Qi(赵凤起), YI Jian-Hua (仪建华), et al. Acta Phys.-Chim. Sin. (物理化学学报), 2011,27(2):281-288

    19. [19]

      [19] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), PEI Qing(裴庆), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(2): 231-238

    20. [20]

      [20] ZHAO Ning-Ning(赵宁宁), HE Cui-Cui(贺翠翠), LIU Jian-Bing(刘健冰), et al. Chin. J. Explos. Propellants(火炸药学 报), 2012,35(6):32-36

    21. [21]

      [21] Tillotson T M, Gash A E, Simpson R L, et al. J. Non-Cryst. Solids, 2001,285:338-345

    22. [22]

      [22] Granier J J, Pantoya M L. Combust. Flame, 2004,138:373-383

    23. [23]

      [23] Tian N, Zhou Z Y, Sun S G, et al. Science, 2007,316:732

    24. [24]

      [24] Zhang L F, Zhong S L, Xu A W, et al. Angew. Chem. Int. Ed., 2013,52:645-649

    25. [25]

      [25] Li L L, Chen X B, Wu Y E, et al. Angew. Chem. Int. Ed., 2013,52:11049-11053

    26. [26]

      [26] Wu Y E, Cai S F, Wang D S, et al. J. Am. Chem. Soc., 2013, 131:8975-8981

    27. [27]

      [27] Xie X W, Li Y, Liu Z Q, et al. Nature, 2009,458:746

    28. [28]

      [28] Reid D L, Russo A E, Carro R V, et al. Nano Lett., 2007,7: 2157-2161

    29. [29]

      [29] FANG Xiao-Sheng(方晓生), ZHANG Li-De(张立德). Chinese J. Inorg. Chem.(无机化学学报), 2006,22(9):1555-1567

    30. [30]

      [30] HAN Yu-Xiang(韩玉香), SHAO Yun(邵云), WAN Hai-Qin (万海勤), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):481-486

    31. [31]

      [31] LIU Zi-Ru(刘子如). Thermal Analyses for Energetic Materials(含能材料热分析). Beijing: National Defense Industry Press, 2008.

    32. [32]

      [32] HU Rong-Zu(胡荣祖), GAO Sheng-Li(高胜利), ZHAO Feng-Qi(赵凤起), et al. Thermal Analysis Kinetics(热分析 动力学). Beijing: Science Press, 2008.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    7. [7]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    10. [10]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    17. [17]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(0)
  • Abstract views(353)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return