Citation: AN Ting, ZHAO Feng-Qi, MA Hai-Xia, REN Xiao-Ning, ZHAO Ning-Ning, WANG Qiong, YANG Yong. MnO2 Nanotube and Its Super Thermite: Preparation and Their Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 97-102. doi: 10.11862/CJIC.2015.010 shu

MnO2 Nanotube and Its Super Thermite: Preparation and Their Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine

  • Corresponding author: ZHAO Feng-Qi, 
  • Received Date: 20 July 2014
    Available Online: 25 September 2014

    Fund Project: 国家自然科学基金(No.21173163) (No.21173163)燃烧与爆炸技术重点实验室基金(No.9140C350302120C3501)资助项目 (No.9140C350302120C3501)

  • The nano-MnO2 was prepared by hydrothermal method, and then super thermite Al/MnO2 was prepared by ultrasonic dispersion method using nano-MnO2 and Al nanoparticles as raw materials. The physical phase, composition, morphology and structure of products were characterized by X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS). The catalytic effect of MnO2 nanotube and the super thermite on the thermal decomposition of cyclotrimethylene trinitramine were investigated by differential scanning colorimetry (DSC). The results indicate that nano-MnO2 is in tubular structure, and the globose nano-Al particles are homodispersed on the surface of MnO2 nanotube. MnO2 nanotube and its super thermite influence the thermal decomposition behavior and decomposition process of cyclotrimethylene trinitramine. They can change the primary decomposition of liquid phase to the reaction of secondary gas phase and can change the shape of main decomposition peak obviously.
  • 加载中
    1. [1]

      [1] Dreizin E L. Prog. Energy Combust. Sci., 2009(35):141-167

    2. [2]

      [2] Pamela J, Kaste B. The Amptiac Newsletter, 2004,8(4):85-89

    3. [3]

      [3] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005(156):164-169

    4. [4]

      [4] Mei J, Halldeam R D, Xiao P. Scr. Mater., 1999,41(5):541-548

    5. [5]

      [5] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), XIAO Li-Bai (肖立柏). Chin. J. Explos. Propellants(火炸药学报), 2010, 33(3):55-62

    6. [6]

      [6] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), ZHANG Ping-Fei (张平飞). Nanosci. Technol.(纳米科技), 2009,6(36):60-67

    7. [7]

      [7] Walker J D. Thesis for the Doctorate of Georgia Institute of Technology. 2007.

    8. [8]

      [8] Mei J, Halldeam R D, Xiao P. Scr. Mater., 1999,41(5):541-548

    9. [9]

      [9] Kim Soo H. Adv. Mater., 2004,16(20):1821-1825

    10. [10]

      [10] Umbrajkar S M, Schoenitz M, Dreizin E L. Propellants Explos. Pyrotech., 2006,31(5):382-389

    11. [11]

      [11] Umbrajkar S M, Seshadri S, Schoenitz M, et al. J. Propuls Power, 2008,24(2):192-198

    12. [12]

      [12] Schoenitz M, Umbrajkar S M, Dreizin E L. J. Propuls Power, 2007,23(4):683-687

    13. [13]

      [13] Schoenitz Mirko, Ward Trent S, Dreizin Edward L. Proc. Combust. Inst., 2005(30):2071-2078

    14. [14]

      [14] Bockmon B S, Pantoya M L, Son S F, et al. J. Appl. Phys., 2005,98(6):064903(7 pages)

    15. [15]

      [15] Badiola C, Schoenitz M, ZHU Xiao-Ying, et al. J. Alloys Compd., 2009,488:386-391

    16. [16]

      [16] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005,156:164-169

    17. [17]

      [17] Weismiller M R, Malchi J Y, Yetter R A, et al. Proc. Combust. Inst., 2009,32(2):1895-1903

    18. [18]

      [18] AN Ting(安 亭), ZHAO Feng-Qi(赵凤起), YI Jian-Hua (仪建华), et al. Acta Phys.-Chim. Sin. (物理化学学报), 2011,27(2):281-288

    19. [19]

      [19] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), PEI Qing(裴庆), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(2): 231-238

    20. [20]

      [20] ZHAO Ning-Ning(赵宁宁), HE Cui-Cui(贺翠翠), LIU Jian-Bing(刘健冰), et al. Chin. J. Explos. Propellants(火炸药学 报), 2012,35(6):32-36

    21. [21]

      [21] Tillotson T M, Gash A E, Simpson R L, et al. J. Non-Cryst. Solids, 2001,285:338-345

    22. [22]

      [22] Granier J J, Pantoya M L. Combust. Flame, 2004,138:373-383

    23. [23]

      [23] Tian N, Zhou Z Y, Sun S G, et al. Science, 2007,316:732

    24. [24]

      [24] Zhang L F, Zhong S L, Xu A W, et al. Angew. Chem. Int. Ed., 2013,52:645-649

    25. [25]

      [25] Li L L, Chen X B, Wu Y E, et al. Angew. Chem. Int. Ed., 2013,52:11049-11053

    26. [26]

      [26] Wu Y E, Cai S F, Wang D S, et al. J. Am. Chem. Soc., 2013, 131:8975-8981

    27. [27]

      [27] Xie X W, Li Y, Liu Z Q, et al. Nature, 2009,458:746

    28. [28]

      [28] Reid D L, Russo A E, Carro R V, et al. Nano Lett., 2007,7: 2157-2161

    29. [29]

      [29] FANG Xiao-Sheng(方晓生), ZHANG Li-De(张立德). Chinese J. Inorg. Chem.(无机化学学报), 2006,22(9):1555-1567

    30. [30]

      [30] HAN Yu-Xiang(韩玉香), SHAO Yun(邵云), WAN Hai-Qin (万海勤), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):481-486

    31. [31]

      [31] LIU Zi-Ru(刘子如). Thermal Analyses for Energetic Materials(含能材料热分析). Beijing: National Defense Industry Press, 2008.

    32. [32]

      [32] HU Rong-Zu(胡荣祖), GAO Sheng-Li(高胜利), ZHAO Feng-Qi(赵凤起), et al. Thermal Analysis Kinetics(热分析 动力学). Beijing: Science Press, 2008.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    5. [5]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    6. [6]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    7. [7]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    13. [13]

      Zehua Zhao Xiaoyan An Jinrong Xu Ling Yang Hao Zhao Zhongyun Wu . Independent Development and Application of Calorimetric Experiment Data Acquisition and Processing Software. University Chemistry, 2025, 40(11): 402-408. doi: 10.12461/PKU.DXHX202505045

    14. [14]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    15. [15]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    16. [16]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    17. [17]

      Kun ChenHuimin LinXin PengZiying WuJingyue DaiYi SunYaxuan FengZiyi HuangZhiqiang YuMeng YuGuangyu YaoJigang WangIn situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045

    18. [18]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    19. [19]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    20. [20]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(0)
  • Abstract views(595)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return