Citation: LI Dong-Lin, MA Shou-Long, LI Yan, XIE Rong, TIAN Miao, FAN Xiao-Yong, GOU Lei, SHI Yong-Xin, YONG Hong-Tuan-Hua, HAO Li-Min. EDTA Assisted Synthesis and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as a Cathode Material for Lithium Ion Btteries[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1056-1062. doi: 10.11862/CJIC.2014.167 shu

EDTA Assisted Synthesis and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as a Cathode Material for Lithium Ion Btteries

  • Received Date: 18 August 2013
    Available Online: 25 February 2014

    Fund Project: 国家自然科学基金(No.21073021,20903016,21103013);教育部高等学校科学技术重大项目培育资金项目(No.708084) (No.21073021,20903016,21103013);教育部高等学校科学技术重大项目培育资金项目(No.708084)中央高校基本科研业务费专项资金(No.CHD2010ZD008,CHD2011ZD007)资助项目。 (No.CHD2010ZD008,CHD2011ZD007)

  • Li2MnSiO4/C nanospheres were prepared by combining the sol-gel and solvothermal processing using ethylene diamine tetraacetic acid (EDTA) as a chelating agent. After calcined under Ar atmosphere at 700 ℃, the (Li, Mn, Si)precursor complexed by EDTAtransformed into Li2MnSiO4/C nanocomposite particles approximately 50 nm in diameter. The initial charge and discharge specific capacities of the sample are 223 and 140 mAh·g-1 at a current density of 33 mA·g-1 (0.1C), respectively, and fifth discharge specific capacity can be achieved 138 mAh·g-1. The discharge specific capacity still is stabilized at around 80 mAh·g-1 at a current density of 66 mA·g-1 (0.2C) after 20 cycles. These results indicate that EDTAcan prevent secondary crystalline phase of forming during calcinations. Such well-dispersed nano-powder exhibits improved cycleability for Li2MnSiO4 cathode.
  • 加载中
    1. [1]

      [1] Nytén A, Abouimrane A, Armand M, et al. Electrochem. Commun., 2005, 7(2):156-160

    2. [2]

      [2] ZUO Peng-Jian(左朋建), WANG Zhen-Bo(王振波), YIN Ge-Ping(尹鸽平), et al. Materials Review(材料导报), 2009, 23 (6):28-31

    3. [3]

      [3] Wu X Z, Jiang X, Huo Q S, et al. Electrochim. Acta, 2012, 80:50-55

    4. [4]

      [4] Bai J Y, Gong Z J, Lv D P, et al. J. Mater. Chem., 2012, 22: 12128-12132

    5. [5]

      [5] Fan X Y, Li Y, Wang J J, et al. J. Alloys Compd., 2010, 493: 77-80

    6. [6]

      [6] Dompablo Arroyo-de M E, Armand M, Tarascon J M, et al. Electrochem. Commun., 2006, 8:1292-1294

    7. [7]

      [7] Islam S M. Phil. Trans. R. Soc. A, 2010, 368:3255-3267

    8. [8]

      [8] Dominko R. J. Power Sources, 2008, 184:462-468

    9. [9]

      [9] Dominko R, Bele M, GaberšČek M, et al. Electrochem Commun., 2006, 8:217-222

    10. [10]

      [10] Shao B, Abe Y, Taniguchi I. Powder Technol., 2013, 235:1-8

    11. [11]

      [11] Li Y X, Gong Z L, Yang Y. J. Power Sources, 2007, 174(2): 528-532

    12. [12]

      [12] Liu S, Xu J, Li D Z, et al. J. Power Sources, 2013, 232:258-263

    13. [13]

      [13] Liu J, Xu H Y, Jiang X L, et al. J. Power Sources, 2013, 231:39-43

    14. [14]

      [14] Aravindan V, Ravi S, Kim W S, et al. J. Colloid Interface Sci., 2011, 355:472-477

    15. [15]

      [15] WEI Yi(魏怡), WANG Li-Juan(王利娟), YAN Ji(闫继), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2011, 27(11): 2587-2592

    16. [16]

      [16] Aricoa S, Bruce P, Scrosati B, et al. Nat. Mater., 2005, 4:366-377

    17. [17]

      [17] Li D L, Kong L B, Zhang L Y, et al. J. Non-Cryst. Solids, 2000, 271:45-55

    18. [18]

      [18] LI Dong-Lin(李东林), TIAN Miao(田苗), LI Qian(李倩), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 29(9): 1903-1908

    19. [19]

      [19] Li D L, Tian M, Xie R, et al. J. Alloys Compd., 2014, 582: 88-95

    20. [20]

      [20] Wang J, Li D L, Fan X Y, et al. J. Alloys Compd., 2012, 516:33-38

    21. [21]

      [21] JIANG Wei(姜炜), LI Feng-Sheng(李凤生), CHEN Ling-Yun(陈令允), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2005, 21(2):182-186

    22. [22]

      [22] XI Guo-Xi(席国喜), LIU Yu-Min(刘玉民), QI Shi-Mei(戚世 梅), et al. Bull. Chin. Ceram. Soc.(硅酸盐通报), 2009, 28 (1):194-199

    23. [23]

      [23] ZHU Chen-Fei(朱承飞), XUE Jin-Hua(薛金花), WANG Li (王李), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010, 26(7):1165-1170

    24. [24]

      [24] Di Noto V, Münchow V, Vittadello M, et al. Macromol. Chem. Phys., 2002, 203:1211-1216

    25. [25]

      [25] Li D Y, Zhang L Y, Yao X. J. Non-Cryst. Solids, 2008, 354: 1774-1778

    26. [26]

      [26] Dompablo Arroyo y de M E, Amador U, Gallardo-Amores J M, et al. J. Power Sources, 2009, 189:638-642

    27. [27]

      [27] Li D L, Zhou H S, Honma I. Chem. Commun., 2005, 41: 5187-5189

    28. [28]

      [28] Li D L, Zhou H S, Honma I. Nat. Mater., 2004, 3:65-72

    29. [29]

      [29] Li D L, Tian M, Xie R, et al. Nanoscale, 2014, 6:3302-3308

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(0)
  • Abstract views(370)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return