Citation: LI Ling, LIN Kui, ZHANG Fan, CUI Lan, WANG Hui, CHEN Xiao-Ping, ZHANG Li-Shuang, Sayyar Ali Shah, CUI Shen. Preparation of N-Doped Long Bamboo-Like Carbon Nanotubes and Their Growth Mechanism[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1097-1103. doi: 10.11862/CJIC.2014.157 shu

Preparation of N-Doped Long Bamboo-Like Carbon Nanotubes and Their Growth Mechanism

  • Received Date: 8 October 2013
    Available Online: 17 December 2013

  • N-doped long bamboo-like carbon nanotubes(NDLBLCNTs) were prepared by DCarc-discharge with the coevaporation of anode and stainless steel sheet(SSS). The morphology, structure, and composition of the products were characterized by using scanning electron microscope(SEM), field emission high resolution transmission electron microscope(HRTEM), energy dispersive X-ray(EDX) spectrometer, electron energy loss spectroscopy (EELS), and transmission electron microscope(TEM). The results show that the lengths of the NDLBLCNTs are between 640 nm and 835 nm, the inner diameters are in the range of 23~35 nm, and the outer diameters are in the range of 28~47 nm. In each of the inner cavities formed at the "bamboo joints" there is a black nanoparticle. Both the diameters of such black nanoparticles and the content of NDLBLCNTs in the product are related with the melted and evaporated area of the SSS. The temperature gradient between the SSSand the center of arc discharge zone is about 87.5~94.4 ℃·mm-1. The coevaporation of the SSS together with the anode is the sufficient and necessary condition for the formation NDLBLCNTs. The growth mechanism of the NDLBLCNTs is discussed briefly.
  • 加载中
    1. [1]

      [1] Iijima S. Nature, 1991, 354(6348):56-58

    2. [2]

      [2] Iijima S, Ichihashi T. Nature, 1993, 363(6430):603-605

    3. [3]

      [3] TONG Yu(佟钰), REN Wen-Cai(任文才), ZHAO Zhi-Gang (赵志刚), et al. Chinese J. New Carbon Mater. (新型碳材 料), 2003, 18(2):101-105

    4. [4]

      [4] Fan S S, Chapline M G, Franklin N R, et al. Science, 1999, 283(5401):512-514

    5. [5]

      [5] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297(5582):787-792

    6. [6]

      [6] Qi X Y, Pu K Y, Li H, et al. Angew. Chem. Int. Ed., 2010, 49(49):9426-9429

    7. [7]

      [7] Wang H L, Cui L F, Yang Y, et al. J. Am. Chem. Soc., 2010, 132(40):13978-13980

    8. [8]

      [8] Heng L Y, Chou A, Yu J, et al. Electrochem. Commun., 2005, 7(12):1457-1462

    9. [9]

      [9] Reddy A L, Shailumon M M, Gowda S R, et al. Nano Lett., 2009, 9(3):1002-1006

    10. [10]

      [10] Gomez De Arco L, Zhang Y, Schlenker C W, et al. ACS Nano, 2010, 4(5):2865-2873

    11. [11]

      [11] Wang X, Zhi L J, Tsao N, et al. Angew. Chem. Int. Ed., 2008, 47(16):2990-2992

    12. [12]

      [12] Li X S, Cai W W, An J, et al. Science, 2009, 324(5932): 1312-1314

    13. [13]

      [13] Dong X C, Su C Y, Zhang W J, et al. Phys. Chem. Chem. Phys., 2010, 12(9):2164-2169

    14. [14]

      [14] He Q Y, Sudibya H G, Yin Z Y, et al. ACS Nano, 2010, 4 (6):3201-3208

    15. [15]

      [15] Endo M, Strano M S, Ajayan P M. Top. Appl. Phys., 2008, 111:13-62

    16. [16]

      [16] Zhu G, Zou X P, Cheng J. Advanced Materials Research: Vol. 47-50. Lau A K T, Lu J, Varadan V K, et al., Ed., Stafa-Zurich Trans Tech Publications, 2008:355-358

    17. [17]

      [17] Su L F, Wang J N, Fan W, et al. Chem. Vapor Depos., 2005, 11(8/9):351-354

    18. [18]

      [18] Liu J W, Shao M W, Chen X Y, et al. J. Am. Chem. Soc., 2003, 125(27):8088-8089

    19. [19]

      [19] Wang Z Y, Zhao Z B, Qiu J S. Carbon, 2006, 44(7):1321-1324

    20. [20]

      [20] Du G H, Li W Z, Liu Y Q, et al. J. Phys. Chem. C, 2007, 111(39):14293-14298

    21. [21]

      [21] Yao Z Y, Zhu X, Li X X, et al. Carbon, 2007, 45(7):1566-1570

    22. [22]

      [22] Adveeva L B, Goncharova O V, Kochubey D I, et al. Appl. Catal. A, 1996, 141(1/2):117-129

    23. [23]

      [23] Martel R, Shea H R, Avouris P. J. Phys. Chem. B, 1999, 103 (36):7551-7556

    24. [24]

      [24] Saito Y. Carbon, 1995, 33(7):979-988

    25. [25]

      [25] SHI Shu-Xiu(石淑秀). Thesis for the Masterate of Tianjin University(天津大学硕士论文). 2012.

    26. [26]

      [26] Saito Y, Yoshikawa T. J. Cryst. Growth, 1993, 134(1/2):154-156

    27. [27]

      [27] Lee C J, Park J. J. Phys. Chem. B, 2001, 105(12):2365-2368

    28. [28]

      [28] Chen Y, Shaw D T, Guo L P. Appl. Phys. Lett., 2000, 76 (17):2469-2471

    29. [29]

      [29] Wang C, Zhan L, Wang Y L, et al. Appl. Surf. Sci., 2010, 257(3):932-936

    30. [30]

      [30] Li Y F, Qiu J S, Zhao Z B, et al. Chem. Phys. Lett., 2002, 366(5/6):544-550

    31. [31]

      [31] ZHAO Xue-Fei(赵雪飞), QIU Jie-Shan(邱介山), SUN Ye-Xin(孙业新), et al. Chinese J. New Carbon Mater. (新型碳 材料), 2009, 24(2):109-113

    32. [32]

      [32] Li D C, Dai L M, Huang S M, et al. Chem. Phys. Lett., 2000, 316(5-6):349-355

    33. [33]

      [33] Wang F, Lang L M, Li B J, et al. Mater. Lett., 2010, 64(1): 86-88

    34. [34]

      [34] González I, De Jesus J, Caizales E. Micron, 2011, 42(8): 819-825

    35. [35]

      [35] Hatta N, Murata K. Chem. Phys. Lett., 1994, 217(4):398-402

    36. [36]

      [36] Zhang X X, Li Z Q, Wen G H, et al. Chem. Phys. Lett., 2001, 333(6):509-514

    37. [37]

      [37] ZHANG Fan(张帆). Thesis for the Doctorate of Tianjin University(天津大学博士论文). 2013.

    38. [38]

      [38] Cui S, Scharff P, Siegmund C, et al. Carbon, 2004, 42(5/6): 931-939

    39. [39]

      [39] Stéphan O, Ajayan P M, Colliex C, et al. Phys. Rev. B, 1996, 53(20):13824-13829

    40. [40]

      [40] Suenaga K, SandréE, Colliex C, et al. Phys. Rev. B, 2001, 63(16):165408(1-4)

    41. [41]

      [41] Terrones M, Ajayan P M, Banhart F, et al. Appl. Phys. A, 2002, 74(3):355-361

    42. [42]

      [42] Terrones M, Redlich P, Grobert N, et al. Adv. Mater., 1999, 11(8):655-658

    43. [43]

      [43] Glerup M, Steinmetz J, Samaille D, et al. Chem. Phys. Lett., 2004, 387(1/3):193-197

    44. [44]

      [44] Kovalevski V V, Safronov A N. Carbon, 1998, 36(7/8):963-968

    45. [45]

      [45] Elliott B R, Host J J, Dravid V P, et al. J. Mater. Res., 1997, 12(12):3328-3344

    46. [46]

      [46] YAN Biao (严彪). Stainless steel Handbook (不锈钢手册). Beijing: Chemical Industry Press, 2009:470

    47. [47]

      [47] Haynes W M. CRC Handbook of Chemistry and Physics: 92nd Edition. New York: CRC Press, 2011-2012, Sect. 4: 19.

    48. [48]

      [48] Fan Y, Wang Y S, Lou J S, et al. J. Am. Ceram. Soc., 2006, 89(2):740-742

    49. [49]

      [49] Lee C J, Park J. Appl. Phys. Lett., 2000, 77(21):3397-3399

    50. [50]

      [50] Deck C P, Vecchio K. Carbon, 2005, 43(12):2608-2617

    51. [51]

      [51] Dasgupta K, Joshi J B, Banerjee S. Chem. Eng. J., 2011, 117 (3):841-869

    52. [52]

      [52] GUAN Lei(关磊), CUI Shen(崔屾), CUI Lan(崔兰), et al. Chinese J. Nanotechnology and Precision Engineering(纳米 技术与精密工程), 2009, 7(5):403-407

    53. [53]

      [53] Sarkar A, Kroto H W, Endo M. Carbon, 1995, 33(1):51-55

    54. [54]

      [54] Smalley R E. Mater. Sci. Eng. B, 1993, 19(1/2):1-7

    55. [55]

      [55] Guo T, Nikolaev P, Thess A, et al. Chem. Phys. Lett., 1995, 243:49-54

    56. [56]

      [56] Kukovitsky E F, Lvov S G, Sainov N A. Chem. Phys. Lett., 2000, 317(1/2):65-70

    57. [57]

      [57] WANG Yan-Yan (王艳艳), CUI Shen(崔屾), CUI Lan (崔兰), et al. Mater. Sci. Technol. (材料科学与工程学报), 2008, 26(1):86-89

    58. [58]

      [58] Sun L, Wang C L, Zhou Y, et al. Appl. Surf. Sci., 2013, 277: 88-93

    59. [59]

      [59] Hatakeyama R, Jeong G H, Kato T, et al. J. Appl. Phys., 2004, 96(11):6053-6060

    60. [60]

      [60] Ohno M, Yoh K. J. Appl. Phys., 2007, 102(12):123908(1-9)

    61. [61]

      [61] Greenberger D, Hentschel K, Weinert F. Compendium of Quantum Physics. London New York: Springer Berlin Heidelberg, 2009:862-864

    62. [62]

      [62] Huo K F, Hu Z, Chen F, et al. Appl. Phys. Lett., 2002, 80 (19):3611-3613

    63. [63]

      [63] Qiu H X, Yang G Z, Zhao B. Carbon, 2013, 53:137-144

    64. [64]

      [64] Liang X L, Dong X, Lin G D, et al. Appl. Catal. B: Env., 2009, 88(3/4):315-322

    65. [65]

      [65] Ugarte D. Nature, 1992, 359(6397):707-709

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    13. [13]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    19. [19]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(0)
  • Abstract views(349)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return