Citation: SHI Shu-Jun, MA Wei-Min, MA Lei, SUN Yang, LI Xiao-Long, HAN Feng, GUAN Ren-Guo. Effect of BaHfO3:Ce Powders Activation Energy on Sintering Transparency[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 885-894. doi: 10.11862/CJIC.2014.155 shu

Effect of BaHfO3:Ce Powders Activation Energy on Sintering Transparency

  • Corresponding author: MA Wei-Min, 
  • Received Date: 17 October 2013
    Available Online: 20 November 2013

    Fund Project: 沈阳市先进陶瓷制备技术及应用重点实验室建设项目资助(No.F12-259-1-00)。 (No.F12-259-1-00)

  • BaHfO3:Ce powders were prepared by normal strike co-precipitation(NSC) method and reverse strike co-precipitation(RSC) method respectively. The phase composition, particle morphology and luminescence properties of BaHfO3:Ce powders were characterized by XRD, TG-DTA and SEM. The effect of different precipitation methods on synthesis kinetics of particle was investigated at different heating rates. The results show that the precursors prepared by NSC and RSC decompose in three stages. The apparent activation energy of each stage is calculated using the Doyle-Ozawa and Kissinger methods. The average apparent activation energies of the three reaction stages of precursors prepared by NSC and RSC are 83.41, 61.70, 262.11 kJ·mol-1 and 81.70, 42.86, 253.44 kJ·mol-1 respectively. The activation energies of grain growth for BaHfO3:Ce powders prepared by NSCand RSCare 27.36 kJ·mol-1 and 23.07 kJ·mol-1 severally. The powder prepared by RSC method exhibits excellent luminescence properties with higher intensity of excitation spectrum excited by 530nm and emission spectrum excited by 399 nm. The BaHfO3:Ce ceramic is partly transparent after being sintered at 2073 Kin vacuum for 3 h.
  • 加载中
    1. [1]

      [1] Ji Y, Jiang D Y, Chen J J, et al. Opt. Mater., 2006, 28(4): 436-440

    2. [2]

      [2] Grezer A, Zych E, Kpiński L. Radiat. Meas., 2010, 45(3-6): 386-388

    3. [3]

      [3] Thomas J K, Padma Kumar H, Prasad V S, et al. Ceram. Int., 2011, 37(2):567-571

    4. [4]

      [4] Vanloef E V, Higgins W M, Glodo J, et al. IEEE T. Nucl. Sci., 2007, 54(3):741-743

    5. [5]

      [5] Ye T N, Dong Z H, Zhao Y N, et al. Langmuir, 2011, 27 (14):8878-8885

    6. [6]

      [6] Zhou B Z, Zhou G H, An L Q, et al. Ceram. Int., 2009, 35 (6):2521-2524

    7. [7]

      [7] XIAO Jin(肖劲), DENG Song-Yun(邓松云), WU Sheng-Hui (吴胜辉), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010, 26(3):464-468

    8. [8]

      [8] SI Wei(司伟), GAO Hong(高宏), WANG Jing(王晶), et al. Rare Metal. Mat. Eng.(稀有金属材料与工程), 2012, 41(5): 885-889

    9. [9]

      [9] Bhargava R, Sharma P K, Kumar S, et al. J. Solid State Chem., 2010, 183(6):1400-1408

    10. [10]

      [10] He Z, Yuan H, Glasscock J A, et al. Acta Mater., 2010, 58 (11):3860-3866

    11. [11]

      [11] WANG Yue-Jun(王岳俊), ZHOU Kang-Gen(周康根), JIANG Zhi-Gang(蒋志刚). J. Inorg. Mater.(无机材料学报), 2012, 27(2):195-200

    12. [12]

      [12] QIU Yan-Peng(秋艳鹏), ZHANG Xi-Wen(张溪文), HAN Gao-Rong(韩高荣). Rare Metal. Mat. Eng.(稀有金属材料与 工程), 2006, 35(suppl.2):190-193

    13. [13]

      [13] Laloue N, Couenne F, Le Gorrec Y, et al. Chem. Eng. Sci., 2007, 62(23):6604-6614

    14. [14]

      [14] Ji Y M, Jiang D Y, Shi J L. Mater. Lett., 2005, 59:868-871

    15. [15]

      [15] Baklanova Y V, Maksimova L G, Denisova T A, et al. Bull. Russ. Acad. Sci., Phys., 2011, 75(8):1118-1120

    16. [16]

      [16] Shamsipur M, Pourmortazavi S M, Hajimirsadeghi S S, et al. Colloids Surf., A, 2013, 423(20):35-41

    17. [17]

      [17] Ozawa T. Bull. Chem. Soc. Jpn., 1965, 38:1881-1886

    18. [18]

      [18] Doyle C D. J. Appl. Polym. Sci., 1961, 5:285-292

    19. [19]

      [19] Kissinger H E. J. Res. Nat. Bur. Stand, 1965, 57:217-219

    20. [20]

      [20] Kissinger H E. Anal. Chem., 1957, 29:1702-1704

    21. [21]

      [21] XUE Yong-Qiang(薛永强), ZHAO Hong(赵红), DU Jian-Ping(杜建平). Chinese J. Inorg. Chem.(无机化学学报), 2006, 22(11):1952-1956

    22. [22]

      [22] Aminzare M, Amoozegar Z, Sadrnezhaad S K. Mater. Res. Bull., 2012, 47(11):3586-3591

    23. [23]

      [23] Tong Y P, Zhao S B, Feng W F, et al. J. Alloys Compd., 2013, 550:268-272

    24. [24]

      [24] Hsu Y W, Yang K H, Yeh S W, et al. J. Alloys Compd., 2013, 555(5):82-87

    25. [25]

      [25] LIU Jin(刘晶), Ma Wei-Min(马伟民), WEN Lei(闻雷), et al. Acta Metall. Sin.(金属学报), 2008, 44(3):381-384

    26. [26]

      [26] Vanloef E V, Wang Y M, Miller S R, et al. Opt. Mater., 2010, 33(1):84-90

    27. [27]

      [27] ZHOU Xian-Ju(周贤菊), CHEN Jia(陈加), YANG Xiao-Dong(杨小东). Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(5):932-936

    28. [28]

      [28] Zhang K, Hu W B, Wu Y T, et al. Ceram. Int., 2009, 35(2): 719-723

    29. [29]

      [29] Pradhan M, Kapur P C, Pradip. J. Ceram. Int., 2012, 38(4): 2835-2843

    30. [30]

      [30] LI Wei(李蔚), GAO Lian(高濂), GUI Lin-Hua(归林华), et al. J. Inorg. Mater.(无机材料学报), 2000, 15(3):563-540

    31. [31]

      [31] Ikesue A, Yoshida K, Yamamoto T. J. Am. Ceram. Soc., 1997, 80(6):1517-1522

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    15. [15]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(401)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return