Citation: XIA Bing-Bo, QIU Guang-Chao, SUN Hong-Dan, FANG Guo-Qing, LIU Wei-Wei, ZHANG Rui-Xue, WANG Hong-Yu, LI De-Cheng. Improved Electrochemical Properties of Conducting AZO-Coated Spinel LiMn2O4 at 55℃[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 725-732. doi: 10.11862/CJIC.2014.125 shu

Improved Electrochemical Properties of Conducting AZO-Coated Spinel LiMn2O4 at 55℃

  • Corresponding author: LI De-Cheng, 
  • Received Date: 16 September 2013
    Available Online: 18 November 2013

    Fund Project: 科技部科研院所研究开发专项基金(No.2010EG111015)资助课题;江苏省科技支撑计划-工业项目(No.BE2013006-3)资助项目。 (No.2010EG111015)资助课题;江苏省科技支撑计划-工业项目(No.BE2013006-3)

  • To improve the electrochemical properties of spinel LiMn2O4 cathode material, LiMn2O4 coated with Al doped ZnO(AZO) was prepared by sol-gel method. The effects of AZO coating on the structural and electrochemical properties were investigated by XRD, SEM, EDS, TEM, EIS, ICP-AES and charge-discharge test. The results demonstrate that AZO coating can effectively obstruct the direct contact between the cathode electrode and electrolyte and suppress the dissolution of manganese into the electrolyte. It is shown that 1.5wt% AZO-coated LiMn2O4 delivers a capacity of 114 mAh·g-1 with a capacity retention of 95.4% after 100 cycles operated at 1C rate and 55 ℃, which is obviously higher than that of bare LiMn2O4 (70.6%). Moreover, 1.5wt% AZO-coated LiMn2O4 presents an excellent high-rate capability with the discharge capacity of 99 mAh·g-1 at 10C rate.
  • 加载中
    1. [1]

      [1] Thackeray M M, David W I F, Bruce P G, Goodenough J B, Mater. Res. Bull., 1983, 18:461-472

    2. [2]

      [2] Liu B, Zhang Q, He S C, Sato Y, et al. Electrochim. Acta, 2011, 56:6748-6751

    3. [3]

      [3] ZHANG Qian(张茜), LIU Wei-Wei(刘伟伟), FANG Guo-Qing(方国清), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2012, 28(12):2501-2507

    4. [4]

      [4] Qu Q T, Fu L J, Zhan X Y, et al. Energy Environ. Sci., 2011, 4:3985-3990

    5. [5]

      [5] Tang W, Hou Y Y, Wang F X, et al. Nano Lett., 2013, 13: 2036-2040

    6. [6]

      [6] Barboux P, Tarascon J M, Shokoohi F K, J. Solid State Chem., 1991, 94:185-196

    7. [7]

      [7] Liu W, Farrington G C, Chaput F, et al. Electrochem. Soc., 1996, 143:879-884

    8. [8]

      [8] QIU Guang-Chao(仇光超), XIA Bing-Bo(夏丙波), SUN Hong-Dan(孙洪丹), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2013, 29(3):437-443

    9. [9]

      [9] Kim J, Manthiram A. Nature, 1997, 390:265-267

    10. [10]

      [10] Cho J, Kim G B, Lim H S, et al. Electrochem. Solid-State Lett., 1999, 2:607-609

    11. [11]

      [11] ZHANG Meng-Xiong(张孟雄), ZHAN You-Xiang(张友祥), Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(10):2065-2070

    12. [12]

      [12] DU Ke(杜柯), HUANG Jin-Long(黄金龙), HU Guo-Rong(胡 国荣), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 29(5):1031-1036

    13. [13]

      [13] Liu W W, Fang G Q, Xia B B, et al. RSC Adv., 2013, 3: 15630-15635

    14. [14]

      [14] XIAO Jin(肖劲), ZHU Hua-Li(朱华丽), CHEN Zhao-Yong (陈召勇), et al. Chinese J. Inorg. Chem.(无机化学学报), 2005, 21(11):1719-1722

    15. [15]

      [15] WANG Chao(王超), LIU Xing-Quan(刘兴泉), LIU Hong-Ji (刘宏基), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(9):1835-1842

    16. [16]

      [16] Yamada A, Tanaka M. Mater. Res. Bull., 1995, 30(6):715-721

    17. [17]

      [17] Chung K Y, Kim K B. Electrochim. Acta, 2004, 49(20):3327 -3337

    18. [18]

      [18] Ouyang C Y, Shi S Q, Lei M S. J. Alloys Compd., 2009, 474: 370-374

    19. [19]

      [19] Xia Y Y, Zhou Y H, Yoshio M. J. Electrochem. Soc., 1997, 144:2593-2600

    20. [20]

      [20] Jang D H, Shin Y J, Oh S M. J. Electrochem. Soc., 1996, 143:2204-2211

    21. [21]

      [21] Li C, Zhang H P, Fu L J. Electrochim. Acta, 2006, 51:3872-3883

    22. [22]

      [22] Kim W K, Han D W, Ryu W H, et al. Electrochim. Acta, 2012, 71:17-21

    23. [23]

      [23] Arumugam D, Paruthimal K G. J. Mater. Chem., 2008, 624: 197-204

    24. [24]

      [24] Gnanaraj J S, Pol V G, Gedanken A, et al. Electrochem. Commun., 2003, 5:940-945

    25. [25]

      [25] Lin Y M, Wu H C, Yen Y C, et al. J. Electrochem. Soc., 2005, 152:A1526-A1532

    26. [26]

      [26] Han J M, Myung S T, Sun Y K. J. Electrochem. Soc., 2006, 153:A1290-A1295

    27. [27]

      [27] Zhou Z, Kato K, Komaki T, et al. J. Eur. Ceram. Soc., 2004, 24:139-146

    28. [28]

      [28] Kim Y S, Tai W P. Appl. Surf. Sci., 2007, 253:4911-4916

    29. [29]

      [29] Tsubota T, Ohtaki M, Eguchi K, et al. Mater. Chem., 1997, 7:85-90

    30. [30]

      [30] Arumugam D, Kalaignan G P. Thin Solid Films, 2011, 520: 338-343

    31. [31]

      [31] Li D C, Kato Y, Kobayakawa K, et al. J. Power Sources, 2006, 160:1342-1348

    32. [32]

      [32] Choi Y M, Pyun S I. Solid State Ionics, 1997, 99:173-183

    33. [33]

      [33] Li D C, Sasaki Y, Kobayakawa K, et al. Electrochim. Acta, 2006, 51:3809-3813

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    17. [17]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(479)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return