Citation: YAN Bo, ZHANG Jin-Qiu, YANG Pei-Xia, AN Mao-Zhong. Effect of 2-Butyne-1,4-diol and Ethylene Diamine on Electrodeposition of Cu from Ionic Liquid[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 952-960. doi: 10.11862/CJIC.2014.121 shu

Effect of 2-Butyne-1,4-diol and Ethylene Diamine on Electrodeposition of Cu from Ionic Liquid

  • Corresponding author: AN Mao-Zhong, 
  • Received Date: 1 November 2013
    Available Online: 9 December 2013

    Fund Project: 国家自然科学基金(No.51074057)资助项目。 (No.51074057)

  • The effect of additives, 2-Butyne-1,4-diol (BDO) and ethylene diamine (EDA), was investigated on the electrodeposition of Cu from 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ([HMIM]OTF). The results of UV-Vis absorption spectra and Cyclic voltammograms indicate that the reduction potential of Cu shifts to the positive side with the addition of BDO without any changes in the coordination environment of Cu2+. The adsorption of BDO on surface of working electrode results in a change in morphology of the obtained deposit. In the presence of EDA, the coordination environment of Cu2+ is changed, suggesting the formation of a new complex by Cu2+ and EDA. The deposition potential shifts to the positive side with addition of EDA. Scanning electron microscope and atomic force microscope tests show that the surface morphology of the obtained deposit is flatter and more granular compared to that without EDA. When BDO and EDA are added into [HMIM]OTF at the same time, the deposition potential still shifts positively and nano-sized grains are obtained.
  • 加载中
    1. [1]

      [1] Endres F. ChemPhysChem, 2002, 3:144-154

    2. [2]

      [2] Abbott A P, McKenzie K J. Phys. Chem. Chem. Phys., 2006, 8:4265-4279

    3. [3]

      [3] Armand M, Endres F, MacFarlane D R, et al. Nat. Mater., 2009, 8:621-629

    4. [4]

      [4] Endres F, MacFarlane D, Abbott A P. Electrodepositon from Ionic Liquid. Weinheim: Wiley-VCH, 2008.

    5. [5]

      [5] Hsieh Y T, Leong T I, Huang C C, et al. Chem. Commun., 2010, 46:484-486

    6. [6]

      [6] Hsieh Y T, Sun I W. J. Electrochem. Commun., 2011, 13: 1510-1513

    7. [7]

      [7] Zein El Abedin S, Giridhar P, Schwab P, et al. J. Electrochem. Commun., 2010, 12:1084-1086

    8. [8]

      [8] Gasparotto L H S, Borisenko N, Bocchi N, et al. Phys. Chem. Chem. Phys., 2009, 11:11140-11145

    9. [9]

      [9] Shimamura O, Yoshimoto N, Matsumoto M, et al. J. Power Sources, 2011, 3:1586-1588

    10. [10]

      [10] Kornyshev A A. J. Phys. Chem. B, 2007, 111:5545-5557

    11. [11]

      [11] Fedorov M V, Kornyshev A A. J. Phys. Chem. B, 2008, 112: 11868-11872

    12. [12]

      [12] Abbott A P, Barron J C, Frisch G, et al. J. Electrochimica Acta, 2011, 56:5272-5279

    13. [13]

      [13] Fukui R, Katayama Y, Miura T. J. Electrochimica Acta, 2011, 56:1190-1196

    14. [14]

      [14] Abbott A P, El Ttaib K, Frisch G, et al. Phys. Chem. Chem. Phys., 2009, 11:4269-4277

    15. [15]

      [15] Cerisier M, Attenborough K, Fransaer J, et al. J. Electrochem. Soc., 1999, 146:2156-2162

    16. [16]

      [16] Grujicic D, Pesic B. J. Electrochimica Acta, 2002, 47:2901-2912

    17. [17]

      [17] Donepudi V S, Venkatachalapathy R, Ozemoyah P O, et al. Solid State Lett., 2001, 4:C13-C16

    18. [18]

      [18] LI Ya-Bing(李亚冰), WANG Wei(王为), LI Yong-Lei(李永 磊). Chinese J. Inorg. Chem.(无机化学学报), 2008, 24(4): 534-540

    19. [19]

      [19] YANG Rui-Na(杨瑞娜), HU Xiao-Yuan(胡晓院), DUAN Zheng(段征), et al. Chinese J. Inorg. Chem.(无机化学学 报), 1999, 15(6):697-708

    20. [20]

      [20] Gu C D, You Y H, Wang X L, et al. Surface & Coatings Technology, 2012, 209:117-123

    21. [21]

      [21] Chen P Y, Deng M J, Zhuang D X. J. Electrochimica Acta, 2009, 54:6935-6940

    22. [22]

      [22] Sakamoto T, Azumi K, Tachikawa H, et al. J. Electrochimica Acta, 2010, 55:8570-8578

    23. [23]

      [23] Katayama Y, Fukui R, Miura T. J. Electrochem. Soc., 2007, 154:D534-D537

    24. [24]

      [24] Rodriguez-Torres I, Valentin G, Lapicque F. J. Appl. Electrochem., 1999, 29:1035-1044

    25. [25]

      [25] Zhu Y L, Kozuma Y, Katayama Y, et al. J. Electrochimica Acta, 2009, 54:7502-7506

    26. [26]

      [26] Valencia H, Kohyama M, Tanaka S, et al. J. Chem. Phys., 2009, 131:244705(1)-244705(11)

    27. [27]

      [27] FANG Jing-Li(方景礼). Theory and Applications of Electro-plating Additives(电镀添加剂理论与应用). Beijing: National Defense Industry Press, 2006.

  • 加载中
    1. [1]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    2. [2]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

Metrics
  • PDF Downloads(0)
  • Abstract views(458)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return