Citation: ZHANG Fen, CHAI Bo, LIAO Xiang, REN Mei-Xia, LIU Bing-Ren. Preparation and Visible Light Photocatalytic Properties of RGO/C3N4 Composites[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 821-827. doi: 10.11862/CJIC.2014.094 shu

Preparation and Visible Light Photocatalytic Properties of RGO/C3N4 Composites

  • Corresponding author: CHAI Bo, 
  • Received Date: 3 June 2013
    Available Online: 1 November 2013

    Fund Project: 武汉轻工大学引进(培养)人才科研启动项目(2012RZ12) (培养)人才科研启动项目(2012RZ12)武汉轻工大学大学生创新创业训练计划资助项目(No.CXXL2013009)。 (No.CXXL2013009)

  • The graphitic-like carbon nitride (C3N4) and graphene oxide (GO) were respectively prepared by one step semi-enclosed pyrolysis and improved Hummers method. Following the reduced graphene oxide/C3N4 (RGO/C3N4) composites were fabricated via a photo-reduction route. The as-prepared samples were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance absorption spectroscopy (DRS), Photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity of samples was evaluated under visible light irradiation using Rhodamine B(RhB) as probe molecule. The experimental results show that the introduction of RGO could considerably enhance photocatalytic activity, and the 6.0% RGO/C3N4 composite exhibits the best photocatalytic performance. The significantly enhanced photocatalytic activity for the present composite originates from the electron-accepting and electron-transportation property of RGO, which inhibits the recombination rate of photogenerated electron-hole pairs.
  • 加载中
    1. [1]

      [1] Hu X L, Li G S, Yu J C. Langmuir, 2010, 26:3031-3039

    2. [2]

      [2] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39: 4206-4219

    3. [3]

      [3] Chen X B, Shen S H, Guo L J, et al. Chem. Rev., 2010, 110: 6503-6570

    4. [4]

      [4] Lu S Y, Wu D, Wang Q L, et al. Chemosphere, 2011, 82: 1215-1224

    5. [5]

      [5] Chen X B, Mao S S. Chem. Rev., 2007, 107:2891-2959

    6. [6]

      [6] Wang H, Gao J, Guo T Q, et al. Chem. Commun., 2012, 48: 275-277

    7. [7]

      [7] Bi Y P, Ouyan S X, Umezawa N, et al. J. Am. Chem. Soc., 2011, 133:6490-6492

    8. [8]

      [8] Shang M, Wang W Z, Zhang L. J. Hazard. Mater., 2009, 167: 803-809

    9. [9]

      [9] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25:10397-10401

    10. [10]

      [10] Liu J H, Zhang T K, Wang Z C, et al. J. Mater. Chem., 2011, 21:14398-14401

    11. [11]

      [11] Cui Y J, Zhang J S, Zhang G G, et al. J. Mater. Chem., 2011, 21:13032-13039

    12. [12]

      [12] Ge L, Han C C, Liu J. Appl. Catal. B: Environ., 2011, 108 (109):100-107

    13. [13]

      [13] Sun J X, Yuan Y P, Qiu L G, et al. Dalton Trans., 2012, 41: 6756-6763

    14. [14]

      [14] Cao S W, Yuan Y P, Fang J, et al. Int. J. Hydrogen Energy, 2013, 38:1258-1266

    15. [15]

      [15] Chai B, Peng T Y, Mao J, et al. Phys. Chem. Chem. Phys., 2012, 14:16745-16752

    16. [16]

      [16] Dreyer D R, Park S, Bielawski C W, et al. Chem. Soc. Rev., 2010, 39:228-240

    17. [17]

      [17] GENG Jing-Yi(耿静漪), ZHU Xin-Sheng(朱新生), DU Yu-Kou(杜玉扣). Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(2):357-361

    18. [18]

      [18] ZHOU Tian(周田), CHEN Bing-Di(陈炳地), YAO Ai-Hua (姚爱华), et al. Chinese. J. Inorg. Chem. (无机化学学报), 2013, 29(2):231-236

    19. [19]

      [19] YING Hong(应红), WANG Zhi-Yong(王志永), GUO Zheng-Duo(郭政铎), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2011, 27(6):1482-1486

    20. [20]

      [20] Xu T G, Zhang L W Cheng H Y, et al. Appl. Catal. B: Environ., 2011, 101:382-387

    21. [21]

      [21] Xiang Q J, Yu J G, Jaroniec M. J. Phys. Chem. C, 2011, 115:7355-7363

    22. [22]

      [22] Liao G Z, Chen S, Quan X, et al. J. Mater. Chem., 2012, 22: 2721-2726

    23. [23]

      [23] Zhang H, Fan X F, Quan X, et al. Environ. Sci. Technol., 2011, 45:5731-5736

    24. [24]

      [24] CHAI Bo(柴波), SONG Fa-Kun(宋发坤), ZHOU Huan (周欢), et al. J. Chinese. Ceram. Soc.(硅酸盐学报), 2013, 41 (4):560-566

    25. [25]

      [25] Shen J F, Yan B, Shi M, et al. J. Mater. Chem., 2011, 21: 3415-3421

    26. [26]

      [26] Cao J, Xu B Y, Lin H L, et al. Dalton Trans., 2012, 41: 11482-11490

    27. [27]

      [27] Cheng H F, Huang B B, Dai Y, et al. Langmuir, 2010, 26: 6618-6624

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    10. [10]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

Metrics
  • PDF Downloads(0)
  • Abstract views(407)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return