Citation: FAN Ying-Hua, LUO Qin, LIU Gui-Xia, WANG Jin-Xian, DONG Xiang-Ting, YU Wen-Sheng, SUN De. Hydrothermal Synthesis and Photocatalysis of SnS2 Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 627-632. doi: 10.11862/CJIC.2014.093 shu

Hydrothermal Synthesis and Photocatalysis of SnS2 Nanomaterials

  • Received Date: 26 August 2013
    Available Online: 28 November 2013

    Fund Project: 国家自然科学基金(NO.51072026) (NO.51072026)吉林省科技发展计划项目(NO.20130206002GX)资助项目。 (NO.20130206002GX)

  • SnS2 nanomaterials with different morphologies were synthesized by hydrothermal method using different surfactants and different sulfur sources. The influence of reaction condition on morphology and property was discussed. The structure and composition of the as-prepared SnS2 nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic performance of the as-synthesized SnS2 was evaluated by catalytic degradation of Rhodamine B (RhB). The results show that the surfactant and sulfur source play an important role in the structure and morphology of SnS2. When the molar ratio of Sn4+ to Surfactant is 1:1, the samples are all pure hexagonal phase SnS2. The obtained SnS2 nanoplates employing sodium citrate as surfactant and thiourea as sulfur source show the best photocatalytic performance and the larger BET surface area.
  • 加载中
    1. [1]

      [1] Tsuji I, Kato H, Kudo A. Chem. Mater., 2006,18(7):1969-1975

    2. [2]

      [2] Du W M, Deng D H, Han Z T, et al. CrystEngComm., 2011, 13:2071-2076

    3. [3]

      [3] Kale B B, Baeg J O, Lee S M, et a1. Adv. Funct. Mater., 2006,16(10):1349-1354

    4. [4]

      [4] Zhang Y C, Du Z N, Li K W, et al. Sep. Purif. Technol., 2011, 81:101-107

    5. [5]

      [5] Liu H, Su Y, Chen P, et al. J. Mol. Catal. A: Chem., 2013, 378:285-292

    6. [6]

      [6] Zhang Y C, Du Z N, Li S Y, et al. Appl. Catal. B: Environ., 2010,95:153-159

    7. [7]

      [7] Zhang Y C, Li J, Zhang M, et al. Environ. Sci. Technol., 2011,45(21):9324-9331

    8. [8]

      [8] Lei Y Q, Song S Y, Fan W Q, et al. J. Phys. Chem., 2009, 113(4):1280-1285

    9. [9]

      [9] Hupka J, Zaleska A, Janczarek M, et al. Soil and Water Pollution Monitoring, Protection and Remediation NATO Science Series, 2006,69:351-367

    10. [10]

      [10] Arora S K, Patel D H, Agarwal M K. J. Mater. Sci., 1994,29 (15):3979-3983

    11. [11]

      [11] Jiang T, Lough A, Ozin G A, et al. J. Mater. Chem., 1998,8: 721-732

    12. [12]

      [12] Lucena R, Fresno F, Conesa J C. Appl. Catal. A: Gen., 2012,415-416:111-117

    13. [13]

      [13] Li X, Zhu J, Li H X. Appl. Catal. B: Environ., 2012,123-124:174-181

    14. [14]

      [14] Liu X H, Bai H X. Powder Technol., 2013,237:610-615

    15. [15]

      [15] Cai P, Ma D K, Liu Q C, et al. J. Mater. Chem. A, 2013,1: 5217-5223

    16. [16]

      [16] Zhou X L, Zhou T F, Hu J C, et al. CrystEngCommun., 2012,14:5627-5633

    17. [17]

      [17] Luo B, Fang Y, Wang B, et al. Energy Environ., 2012,5: 5226-5230

    18. [18]

      [18] Du Y P, Yin Z Y, Rui X H, et al. Nanoscale, 2013,5:1456-1459

    19. [19]

      [19] Mukaibo H, Yoshizawa A, Momma T, et al. J. Power Sources, 2003,119-121:60-63

    20. [20]

      [20] Deshpande N G, Sagade A A, Gudage Y G, et al. J. Alloys Compd., 2007,436(1-2):421-426

    21. [21]

      [21] Reiss P, Couderc E, Girolamo J D, et al. Nanoscale, 2011,3: 446-489

    22. [22]

      [22] Chao J F, Xu X, Huang H T, et al. CrystEngCommun., 2012,14:6654-6658

    23. [23]

      [23] Panda S K, Antonakos A, Liarokapis E, et al. Mater. Res. Bull., 2007,42(3):576-583

    24. [24]

      [24] Lin Y T, Shi J B, Chen Y C, et al. Nanoscale Res. Lett., 2009,4(7):694-698

    25. [25]

      [25] Zhu Y Q, Chen Y Q, Liu L Z. J. Cryst. Growth, 2011,328 (1):70-73

    26. [26]

      [26] Shi W D, Huo L H, Wang H S, et al. Nanotechnology, 2006,17:2918-2924

    27. [27]

      [27] He M, Yuan L X, Huang Y H. RSC Adv., 2013,3:3374-3383

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(0)
  • Abstract views(713)
  • HTML views(237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return