Citation: HAN Yu-Xiang, SHAO Yun, WAN Hai-Qin, XU Zhao-Yi, ZHENG Shou-Rong. Catalytic Hydrodechlorination of 1, 2-Dichloroethane over TiO2 Nanotube Supported Pd-Ag Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 481-486. doi: 10.11862/CJIC.2014.053 shu

Catalytic Hydrodechlorination of 1, 2-Dichloroethane over TiO2 Nanotube Supported Pd-Ag Catalysts

  • Received Date: 8 April 2013
    Available Online: 9 October 2013

    Fund Project: 国家自然科学基金(No.21107043和21277066)资助项目。 (No.21107043和21277066)

  • TiO2 nanotube supported Pd-Ag catalysts were prepared by the photodeposition and impregnation methods, and the catalystic hydrodechlorination of 1, 2-dichloroethane was investigated. The characterization results of UV-Vis, XRD and XPS showed that given similar Ag loading amount, much higher Ag enrichment was identified on the catalyst prepared by the photodeposition method than by the impregnation method. Accordingly, the catalyst prepared by the photodeposition method exhibit markedly enhanced ethylene selectivity for the hydrodechlorination of 1, 2-dichloroethane. Additionally, the ethylene selectivity was gradually increased with the Ag loading content.
  • 加载中
    1. [1]

      [1] Vogel M T, Criddle C S, McCarty L P. Environ. Sci. Technol., 1987,21:722-736

    2. [2]

      [2] Goldberg D E. Sci. Total. Environ., 1991,100:17-28

    3. [3]

      [3] Pedro M Z, Casas A J, Comez-Sainero M L, et al. Appl. Catal. B: Environ., 2010,98:79-85

    4. [4]

      [4] Kim I D, Allen T D. Ind. Eng. Chem. Res., 1997,36:3019-3026

    5. [5]

      [5] Han Y X, Zhou J, Wang W J, et al. Appl. Catal. B: Environ., 2012,125:172-179

    6. [6]

      [6] Vadlamannati S L, Kovalchuk I V, d'Itri L J. Catal Let., 1999,58:173-178

    7. [7]

      [7] Lambert S, Ferauche F, Brasseur A, et al. Catal. Today, 2005,100:283-289

    8. [8]

      [8] Heinrichs B, Schoebrechts P J, Pirard P J. J. Catal., 2001, 200:309-320

    9. [9]

      [9] Srebowata A, Lisowski W, Sobczak W J, et al. Catal. Today, 2011,175:576-584

    10. [10]

      [10] Kitano M, Nakajima K, Kondo J N, et al. J. Am. Chem. Soc., 2010,132:6622-6623

    11. [11]

      [11] Liu Z Y, Zhang X T, Nishimoto S S, et al. J. Phys. Chem. C, 2008,112:253-259

    12. [12]

      [12] Chen H, Shao Y, Xu Z Y, et al. Appl. Catal. B: Environ., 2011,105:255-262

    13. [13]

      [13] Ohsaki Y, Masaki N, Kitamura T, et al. Phys. Chem. Chem. Phys., 2005,7:4157-4163

    14. [14]

      [14] Kuang D B, Brillet J, Chen P, et al. ACS Nano, 2008.2: 1113-1116

    15. [15]

      [15] Shankar K, Bandara J, Paulose M, et al. Nano Lett., 2008,8: 1654-1659

    16. [16]

      [16] Xiong L, Yang Y, Mai J X, et al. Chem. Eng. J., 2010,2: 313-320

    17. [17]

      [17] Niu H Y, Wang J M, Shi Y L, et al. Micropor. Mesopor. Mat., 2009,1-3:28-35

    18. [18]

      [18] Chen S F, Li J P, Qian K, et al. Nano Res., 2010,3(4):244 -255

    19. [19]

      [19] WANG Zhu-Mei(王竹梅), LI Yue-Ming(李月明), YANG Xiao-Jing(杨小静), et al. Chinese J. Inorg. Chem. (无机化学学报), 2007,23:225-230

    20. [20]

      [20] LI Xue-Ting(李雪亭), ZANG Peng-Yuan(臧鹏远), YE Qiu-Ming(叶秋明), et al. Chinese J. Inorg. Chem. (无机化学学报), 2011,27:1550-1554

    21. [21]

      [21] Zhang Q H, Gao L, Guo J K. Appl. Catal. B: Environ., 2000,26:207-215

    22. [22]

      [22] Matsubara K, Kelly K L, Sakaia N, et al. J. Mater. Chem., 2009,19:5526-5532

    23. [23]

      [23] Lambert S, Cellier C, Grange P, et al. J. Catal., 2004,221: 335-346

    24. [24]

      [24] Luebke D R, Vadlamannati L S, Kovalchuk V I, et al. Appl. Catal. B: Environ., 2002,35:211-217

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(396)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return