Citation: HUANG Fu-Qin, TANG Xin-Cun, XIAO Yuan-Hua, GONG Mei-Li, ZHENG Zhen-Miao, JIN Yuan. Synthesis and Electrochemical Properties of LiFePO4 Hierarchically Nest-Like Microstructures[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 235-241. doi: 10.11862/CJIC.2014.051 shu

Synthesis and Electrochemical Properties of LiFePO4 Hierarchically Nest-Like Microstructures

  • Corresponding author: TANG Xin-Cun, 
  • Received Date: 3 August 2013
    Available Online: 27 September 2013

    Fund Project:

  • The cathode material LiFePO4 with tap density of ca. 1.2 g·cm-3 was synthesized by solvothermal method, using P123 as soft template and ethylene glycol as solvent. The composition, crystal shape, morphology and pore structure of the as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET). The results show that the nest-like LiFePO4 consists of single-crystalline nanoplates with an open three-dimensional porous hierarchical structure. A reasonable formation mechanism is proposed based on time dependent experiments. The main evolving process involves the following steps: nucleation, oriented growth, aggregation and oriented growth. The electrochemical testing results show that the initial discharge specific capacities of nest-like LiFePO4 reach to 132.5 mAh·g-1 at 0.1C.
  • 加载中
    1. [1]

      [1] Sasaki T, Ukyo Y, Novák P. Nat. Mater., 2013,12(6):569-575

    2. [2]

      [2] Tarascon J M, Armand M. Nature, 2001,414(6861):359-367

    3. [3]

      [3] Goodenough J B, Kim Y. Chem. Mater., 2009,22(3):587-603

    4. [4]

      [4] Malik R, Zhou F, Ceder G. Nat. Mater., 2011,10(8):587-590

    5. [5]

      [5] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013,135(4): 1167-1176

    6. [6]

      [6] HUANG Xue-Jie(黄学杰). Mater. China(中国材料进展), 2010,29(8):46-51

    7. [7]

      [7] ZHANG Wei-Min(张卫民), YANG Yong-Hui(杨永会), SUN Si-Xiu(孙思修), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2000,16(6):873-877

    8. [8]

      [8] CONG Xiang-Jie(从向杰), ZHANG Xiang-Jun(张向军), LU Shi-Gang(卢世刚) et al. Chinese J. Inorg. Chem.(无机化学 学报), 2011,27(7):1319-1323

    9. [9]

      [9] Qin X, Wang X, Xiang H, et al. J. Phys. Chem. C, 2010,114 (39):16806-16812

    10. [10]

      [10] Deng H G, Jin S L, Zhan L, et al. J. Power Sources, 2012, 220:342-347

    11. [11]

      [11] Li L X, Tang X C, Liu H T, et al. Electrochim. Acta, 2010, 56(2):995-999

    12. [12]

      [12] Hu L H, Wu F Y, Lin C T, et al. Nat. Commun., 2013,4(4): 1687

    13. [13]

      [13] Li H Q, Zhou H S. Chem. Commun., 2012,48(9):1201-1217

    14. [14]

      [14] Wang Z L, Sun S R, Xia D G, et al. J. Phys. Chem. C, 2008,112(44):17450-17455

    15. [15]

      [15] Ju S Y, Peng H R, Li G C, et al. Mater. Lett., 2012,74:22-25

    16. [16]

      [16] Wang L, He X M, Sun W T, et al. Nano Lett., 2012,12(11): 5632-5636

    17. [17]

      [17] Sun C W, Rajasekhara S, Goodenough J B, et al. J. Am. Chem. Soc., 2011,133(7):2132-2135

    18. [18]

      [18] Kim D H, Kim J. Electrochem. Solid-State Lett., 2006,9(9): A439-A442

    19. [19]

      [19] Zhang C J, He X, Kong Q S, et al. CrystEngComm, 2012,14 (13):4344-4349

    20. [20]

      [20] Xiao Y H, Liu S J, Li F, et al. Adv. Funct. Mater., 2012,22 (19):4052-4059

    21. [21]

      [21] He Z Y, Chen Z H, Li Y G, et al. CrystEngComm, 2011,13 (7):2557-2565

    22. [22]

      [22] Xiao Y H, Zhang A Q, Liu S J, et al. J. Power Sources, 2012,219:140-149

    23. [23]

      [23] ZHANG Bo(张波), ZHAO Ai-Wu(赵爱武), WANG Da-Peng (王大朋), et al. Chem. J. Chinese Universities(高等学校化 学学报), 2010,31(8):1491-1495

    24. [24]

      [24] Wang Q, Deng S X, Wang H, et al. J. Alloys Compd., 2013, 553:69-74

    25. [25]

      [25] Ju S H, Kang Y C. Mater. Chem. Phys., 2008,107(2):328-333

    26. [26]

      [26] Kim J K, Choi J W, Chauhan G S, et al. Electrochim. Acta, 2008,53(28):8258-8264

    27. [27]

      [27] Oh S W,Bang H J, Myung S T, et al. J. Electrochem. Soc., 2008,155(6):A414-A420

    28. [28]

      [28] Chen Z H, Ren Y, Qin Y, et al. J. Mater. Chem., 2011,21 (15):5604-5609

    29. [29]

      [29] Pierotti R A, Rouquerol J. Pure Appl. Chem., 1985,57(4): 603-619

    30. [30]

      [30] ZHU Jian-Xi(朱建喜), HE Hong-Ping(何宏平), YAN Dan (杨丹), et al. J. Inorg. Mater.(无机材料学报), 2004,19(2): 324-328

    31. [31]

      [31] Yang H, Wu X L, Cao M H, et al. J. Phys. Chem. C, 2009, 113(8):3345-3351

    32. [32]

      [32] Nie P, Shen L F, Zhang F, et al. CrystEngComm, 2012,14 (13):4284-4288

    33. [33]

      [33] Su J, Wei B Q, Rong J P, et al. J. Solid State Chem., 2011, 184(11):2909-2919

    34. [34]

      [34] Carriazo D, Rossell M D, Zeng G, et al. Small, 2012,8(14): 2231-2238

    35. [35]

      [35] Popovic J, Demir-Cakan R, Tornow J, et al. Small, 2011,7 (8):1127-1135

    36. [36]

      [36] MacNeil D D, Devigne L, Michot C, et al. J. Electrochem. Soc., 2010,157(4):A463-A468

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    15. [15]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    19. [19]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    20. [20]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

Metrics
  • PDF Downloads(448)
  • Abstract views(956)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return