Citation: JI Shan-Shan, MEI Yan-Xia, ZHANG Jin-Qiu, YANG Pei-Xia, LIAN Ye, AN Mao-Zhong. Fabrication of CuInxGa1-xSe2 Thin Films via Electrodeposition Method with Ionic Liquid Electrolytes[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 466-472. doi: 10.11862/CJIC.2014.036 shu

Fabrication of CuInxGa1-xSe2 Thin Films via Electrodeposition Method with Ionic Liquid Electrolytes

  • Corresponding author: AN Mao-Zhong, 
  • Received Date: 3 September 2013
    Available Online: 14 October 2013

    Fund Project:

  • The electrochemical behavior of CuInxGa1-xSe2 (CIGS) was investigated by cyclic voltammetry (CV) in ionic liquid Reline. The insertion of indium (In) into the CISthin films involved two routes: co-deposition with Cu2+ and Se or trivalent indium ion (In3+). The insertion of gallium (Ga) into the quaternary solid phase (Cu-In-Ga-Se) utilized two routes: co-deposition (with Cu2+, In3+, Se4+) and Ga3+ directly added to Ga. The effects of electrodeposition potential, bath temperature and main salt concentration on CIGSthin films were researched. Cu1.00In0.78Ga0.27Se2.13 thin films were obtained and satisfactory control of film composition and Ga/(Ga+In) was achieved by the choice of process parameters. The standard CIGSsample was calibrated by an inductively coupled plasma optical emission. The morphological properties were detected by scanning electron microscopy. The XRDresult shows that the incorporation of Ga into CISphase and forms CIGSphase.
  • 加载中
    1. [1]

      [1] Bhattacharya R N, Fernandez A M. Sol. Energ. Mat. Sol. C, 2003,76:331-337

    2. [2]

      [2] Zhang L, Liu F F, Li F Y, et al. Sol. Energ. Mat. Sol. C, 2012,99:356-361

    3. [3]

      [3] Lee H, Lee W, Kim J Y, et al. Electrochimica Acta, 2013,87: 450-456

    4. [4]

      [4] Malik S N, Mahboob S, Haider N, et al. Nanoscale, 2011,3: 5132-5139

    5. [5]

      [5] LIAO Cheng(廖成), HAN Jun-Feng(韩俊峰), JIANG Tao(江 涛), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27 (1):1-5

    6. [6]

      [6] Repins I, Contreras M A, Egaas B, et al. Prog. Photovolt., 2008,16:235-239

    7. [7]

      [7] Ishizuka S, Yamada A, Matsubara K, et al. Curr. Appl. Phys., 2010,10:S154-S156

    8. [8]

      [8] Wada T, Hashimoto Y, Nishiwaki S, et al. Sol. Energ. Mat. Sol. C, 2001,67:305-310

    9. [9]

      [9] Sang B S, Kushiya K, Okumura D, et al. Sol. Energ. Mat. Sol. C, 2001,67:237-245

    10. [10]

      [10] Su C Y, Ho W H, Lin H C, et al. Sol. Energ. Mat. Sol. C, 2011,95:261-263

    11. [11]

      [11] Zhou A J, Mei D, Kong X G, et al. Thin Solid Films, 2012, 520:6068-6074

    12. [12]

      [12] LIU Xiao-Yu(刘小雨), WANG Guang-Jun(王广君), TIAN Bao-Li(田宝丽), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2008,24(12):2035-2038

    13. [13]

      [13] Bhattacharya R N, Batchelor W, Wiesner H, et al. J. Electrochem. Soc., 1998,145:3435-3440

    14. [14]

      [14] Lincot D, Guillemoles J F, Taunier S, et al. Sol. Energy, 2004,77:725-737

    15. [15]

      [15] Kwak W C, Han S H, Kim T G, et al. Cryst. Growth Des., 2010,10:5297-5301

    16. [16]

      [16] YAN Zhi-Ying(闫智英), LIU Qiang(刘强), ZHENG Wen- Jun(郑文君). Chinese J. Inorg. Chem.(无机化学学报), 2006,22(11):2055-2060

    17. [17]

      [17] YANG Pei-Xia(杨培霞), AN Mao-Zhong(安茂忠), SU Cai- Na(苏彩娜), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23(9):1501-1504

    18. [18]

      [18] Shivagan D D, Dale P J, Samantilleke A P, et al. Thin Solid Films, 2007,515:5899-5903

    19. [19]

      [19] Harati M, Jia J, Giffard K, et al. Phys. Chem. Chem. Phys., 2010,12:15282-15290

    20. [20]

      [20] Al-Salman R, El Abedin S Z, Endres F. Phys. Chem. Chem. Phys., 2008,10:4650-4657

    21. [21]

      [21] Abedin S Z E, Saad A Y, Farag H K, et al. Electrochimica Acta, 2007,52:2746-2754

    22. [22]

      [22] Abbott A P, Capper G, Davies D L, et al. Chem. Commun., 2003,1:70-71

  • 加载中
    1. [1]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    8. [8]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    9. [9]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    10. [10]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    13. [13]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(0)
  • Abstract views(704)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return