Citation:
CUI Yu-Min, HONG Wen-Shan, LI Hui-Quan, WU Xing-Cai, FAN Su-Hua, ZHU Liang-Jun. Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 toward Methyl Orange and Phenol[J]. Chinese Journal of Inorganic Chemistry,
;2014, (2): 431-441.
doi:
10.11862/CJIC.2014.001
-
BiOI/Bi2WO6 photocatalysts with various BiOIamounts were prepared by a simple deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and low temperature nitrogen adsorption. The photocatalytic performance of BiOI/Bi2WO6 catalysts was evaluated using the photodegradation of methyl orange (MO) and phenol in an aqueous solution under UVand visible light irradiation. The results indicate that compared with commercial Degussa P25 and pure Bi2WO6, the 13.2% BiOI/Bi2WO6 photocatalyst shows much higher UVand visible light photocatalytic performance. The obviously increased photocatalytic activity could be mainly attributed to the effective transfer of the photogenerated electrons and holes at the interface of Bi2WO6 and BiOI, which reduces the recombination of electron-hole pairs. Atransfer process of photogenerated carriers is proposed based on the band structures of BiOIand Bi2WO6. Radical scavengers experiments demonstrate that ·OH, h+, ·O2-and H2O2, especially h+, together dominate the photodegradation process of MOand phenol.
-
-
-
[1]
[1] Chen X B, Liu L, Yu P Y, et al. Science, 2011,331(6018): 746-750
-
[2]
[2] Mills A, Hazafy D. Chem. Commun., 2012,48(4):525-527
-
[3]
[3] Oncescu T, Stefan M I, Oancea P. Environ. Sci. Pollut. Res., 2010,17(5):1158-1166
-
[4]
[4] LI Hui-Quan(李慧泉), CUI Yu-Min(崔玉民), WU Xing-Cai (吴兴才), et al. Chinese J. Inorg. Chem. (无机化学学报), 2012,28(12):2597-2604
-
[5]
[5] Sério S, Jorge M E M, Coutinho M L, et al. Chem. Phys. Lett., 2011,508(1/2/3):71-75
-
[6]
[6] Nonoyama T, Kinoshita T, Higuchi M, et al. J. Am. Chem. Soc., 2012,134(21):8841-8847
-
[7]
[7] Chen S F, Zhang S J, Liu W, et al. J. Hazard. Mater., 2008, 155(1/2):320-326
-
[8]
[8] Li Y Z, Fan Y N, Chen Y. J. Mater. Chem., 2002,12(5): 1387-1390
-
[9]
[9] Carretero-Genevrier A, Boissiere C, Nicole L, et al. J. Am. Chem. Soc., 2012,134(26):10761-10764
-
[10]
[10] Obregón Alfaro S, Martínez-de la Cruz1 A. Appl. Catal. A: Gen., 2010,383(1/2):128-133
-
[11]
[11] Mann A K P, Skrabalak S E. Chem. Mater., 2011,23(4): 1017-1022
-
[12]
[12] Wu D X, Zhu H T, Zhang C Y, et al. Chem. Commun., 2010, 46(38):7250-7252
-
[13]
[13] Amano F, Nogami K, Tanaka M, et al. Langmuir, 2010,26 (10):7174-7180
-
[14]
[14] Huang Y, Ai Z, Ho W, et al. J. Phys. Chem. C, 2010,114 (14):6342-6349.
-
[15]
[15] Min Y L, Zhang K, Chen Y C, et al. Sep. Purif. Technol., 2012,92(5):115-120
-
[16]
[16] Xiao Q, Zhang J, Xiao C, et al. Catal. Commun., 2008,9 (6):1247-1253
-
[17]
[17] Zhang X, Zhang L Z, Xie T F, et al. J. Phys. Chem. C, 2009,113(17):7371-7378
-
[18]
[18] Chen L, Yin S F, Luo S L, et al. Ind. Eng. Chem. Res., 2012,51(19):6760-6768
-
[19]
[19] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264(1): 581-588
-
[20]
[20] Zhang Z J, Wang W Z, Wang L, et al. Appl. Mater. Interfaces, 2012,4(2):593-597
-
[21]
[21] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76(9):1185-1191
-
[22]
[22] Cao J, Xu B Y, Luo B D, et al. Catal. Commun., 2011,13(1): 63-68
-
[23]
[23] Galceran M, Pujol M C, Zaldo C, et al. J. Phys. Chem. C, 2009,113(35):15497-15506
-
[24]
[24] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008, 112(3):747-753
-
[25]
[25] Song X C, Zheng Y F, Ma R, et al. J. Hazard. Mater., 2011,192(1):186-191
-
[26]
[26] Cao J, Xu B Y, Lin H L, et al. Chem. Eng. J., 2012,185/186 (6):91-97
-
[27]
[27] Zhang L, Wang W Z, Zhou L, et al. Appl. Catal. B: Environ., 2009,90(3/4):458-462
-
[28]
[28] Chen X, Mao S S. Chem. Rev., 2007,107(7):2891-2959
-
[29]
[29] Chen S F, Liu Y Z. Chemosphere, 2007,67(5):1010-1017
-
[30]
[30] Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S. Polym. Degrad. Stabil., 2010,95(9):1894-1902
-
[31]
[31] Zhang H. Lü X J, Li Y M, et al. ACS Nano, 2008,2(7):1487- 1491
-
[32]
[32] Morales W, Cason M, Aina O, et al. J. Am. Ceram. Soc., 2008,130(20):6318-6319
-
[33]
[33] Hao R, Xiao X, Zuo X X, et al. J. Hazard. Mater., 2012, 209/210(5):137-145
-
[34]
[34] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44(4):1392-1398
-
[35]
[35] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43(21):8361-8366
-
[36]
[36] Zhang N, Liu S Q, Fu X Z, et al. J. Phys. Chem. C, 2011, 115(18):9136-9145
-
[37]
[37] Helali N, Bessekhouad Y, Bouguelia A, et al. J. Hazard. Mater., 2009,168(1):484-492
-
[38]
[38] Li X N, Huang R K, Hu Y H, et al. Inorg. Chem., 2012,51 (11):6245-6250
-
[39]
[39] Guan M L, Ma D K, Hu S W, et al. Inorg. Chem., 2011,50(3): 800-805
-
[40]
[40] Tang J W, Zou Z G, Ye J H. J. Phys. Chem. B, 2003,107 (51):14265-14269
-
[41]
[41] Yu J G, Yu H G, Cheng B, et al. J. Phys. Chem. B, 2003, 107(50):13871-13879
-
[42]
[42] Jing L Q, Qu Y C, Wang B Q, et al. Sol. Energy Mat. Sol. Cells., 2006,90(12):1773-1787
-
[1]
-
-
-
[1]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[6]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[7]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[8]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[9]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[10]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[11]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[12]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[13]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[14]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[15]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[16]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[17]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[18]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[19]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[20]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1500)
- HTML views(37)