Citation: Qing-yi Guo, Sai-bo Wu, Yan Qian, Wei Hu. Hierarchical Structures of Self-assembled Liquid Crystals and Their Applications[J]. Acta Polymerica Sinica doi: 10.11777/j.issn1000-3304.2020.20002 shu

Hierarchical Structures of Self-assembled Liquid Crystals and Their Applications

  • Liquid crystals, featured by self-assembly property and stimuli responsiveness, have attracted intensive attention not only in fundamental material sciences, but also in advanced functional applications. At different phases, liquid crystals exhibit distinguished structures, such as layered focal conic domains and oil streaks in smectics, lying or standing helical structures in cholesterics, and cubic lattices stacked by double-twisted structures in blue phases. These hierarchical structures present novel optical, mechanical and electromagnetic characteristics, which can be further modulated by external stimuli. In recent years, high-quality liquid crystal hierarchical structures have been realized in large scales via optimizing material components and introducing external confinements. Multi-dimensional manipulations of these hierarchical structures have been achieved by adopting various external stimuli. A series of remarkable applications of such liquid crystal hierarchical structures in particle manipulation, surface modification and optical devices have been demonstrated. This paper reviews the latest research progress in above fields and aims to extend the understanding of soft matter architectures.
  • 加载中
    1. [1]

      Barthlott W, Neinhuis C. Planta, 1997, 202(1): 1 − 8  doi: 10.1007/s004250050096

    2. [2]

      Bruet B, Qi H, Boyce M, Panas R, Tai K, Frick L, Ortiz C. J Mater Res, 2005, 20(9): 2400 − 2419  doi: 10.1557/jmr.2005.0273

    3. [3]

      Kim Y H, Yoon D K, Jeong H S, Lavrentovich O D, Jung H T. Adv Funct Mater, 2011, 21(4): 610 − 627  doi: 10.1002/adfm.201001303

    4. [4]

      Coates D. Liq Cryst, 2015, 42: 653 − 665

    5. [5]

      Chen P, Ma L L, Hu W, Shen Z X, Bisoyi H K, Wu S B, Ge S J, Li Q, Lu Y Q. Nat Commun, 2019, 10(1): 2518  doi: 10.1038/s41467-019-10538-w

    6. [6]

      Wang L, Gutierrez-Cuevas K G, Bisoyi H K, Xiang J, Gautam Singh, Rafael S. Zola, c Satyendra Kumar, Oleg D. Lavrentovich, Augustine Urbasd, Li Q. Chem Commun, 2015, 51(81): 15039 − 15042  doi: 10.1039/C5CC06146F

    7. [7]

      Ok J M, Kim Y H, Lee T Y, Yoo H W, Kwon K, Jung W B, Kim S H, Jung H T. Langmuir, 2016, 32(50): 13418 − 13426  doi: 10.1021/acs.langmuir.6b03355

    8. [8]

      Ma L L, Hu W, Zheng Z G, Wu S B, Chen P, Li Q, Lu Y Q. Adv Opt Mater, 2019, 7(16): 1900393  doi: 10.1002/adom.201900393

    9. [9]

      Kleman M, Lavrentovich O D. Liq Cryst, 2009, 36(10-11): 1085 − 1099  doi: 10.1080/02678290902814718

    10. [10]

      Bramble J P, Evans S D, Henderson J R, Atherton T J, Smith N J. Liq Cryst, 2007, 34(10): 1137 − 1143  doi: 10.1080/02678290701618351

    11. [11]

      Guo W, Herminghaus S, Bahr C. Langmuir, 2008, 24(15): 8174 − 8180  doi: 10.1021/la703717k

    12. [12]

      Yoon D K, Choi M C, Kim Y H, Kim M W, Lavrentovich O D, Jung H T. Nat Mater, 2007, 6(11): 866 − 870  doi: 10.1038/nmat2029

    13. [13]

      Honglawan A, Beller D A, Cavallaro M, Kamien R D, Stebe K J, Yang S. Adv Mater, 2011, 23(46): 5519 − 5523  doi: 10.1002/adma.201103008

    14. [14]

      Kim D S, Čopar S, Tkalec U, Yoon D K. Sci Adv, 2018, 4(11): eaau8064  doi: 10.1126/sciadv.aau8064

    15. [15]

      Ok J M, Kim Y H, Jeong H S, Yoo H W, Kim J H, Srinivasarao M, Jung H T. Soft Matter, 2013, 9(42): 10135 − 10140  doi: 10.1039/c3sm52008k

    16. [16]

      Gryn I, Lacaze E, Carbone L, Giocondo M, Zappone B. Adv Funct Mater, 2016, 26(39): 7122 − 7131  doi: 10.1002/adfm.201602729

    17. [17]

      Kim Y H, Lee J O, Jeong H S, Kim J H, Yoon E K, Yoon D K, Yoon J B, Jung H T. Adv Mater, 2010, 22(22): 2416 − 2420  doi: 10.1002/adma.200903728

    18. [18]

      Kim Y H, Jeong H S, Kim J H, Yoon E K, Yoon D K, Jung H T. J Mater Chem, 2010, 20(31): 6557 − 6561  doi: 10.1039/c0jm00910e

    19. [19]

      Kim D S, Cha Y J, Kim H, Kim M H, Kim Y H, Yoon D K. RSC Adv, 2014, 4(51): 26946 − 26950  doi: 10.1039/C4RA03005B

    20. [20]

      Kim Y H, Yoon D K, Jeong H S, Kim J H, Yoon E K, Jung H T. Adv Funct Mater, 2009, 19(18): 3008 − 3013  doi: 10.1002/adfm.200901135

    21. [21]

      Kim Y H, Yoon D K, Choi M C, Jeong H S, Kim M W, Lavrentovich O D, Jung H T. Langmuir, 2009, 25(3): 1685 − 1691  doi: 10.1021/la802870z

    22. [22]

      Gryn I, Lacaze E, Bartolino R, Zappone B. Adv Funct Mater, 2015, 25(1): 142 − 149  doi: 10.1002/adfm.201402875

    23. [23]

      Zappone B, Meyer C, Bruno L, Lacaze E. Soft Matter, 2012, 8(16): 4318 − 4326  doi: 10.1039/c2sm07207f

    24. [24]

      Ma L L, Tang M J, Hu W, Cui Z Q, Ge S J, Chen P, Chen L J, Qian H, Chi L F, Lu Y Q. Adv Mater, 2017, 29(15): 1606671  doi: 10.1002/adma.201606671

    25. [25]

      Ma L L, Wu S B, Hu W, Liu C, Chen P, Qian H, Wang Y D, Chi L F, Lu Y Q. ACS Nano, 2019, 13(12): 13709 − 13715  doi: 10.1021/acsnano.9b07104

    26. [26]

      Rosenblatt C S, Pindak R, Clark N A, Meyer R B. J Phys, 1977, 38(9): 1105 − 1115  doi: 10.1051/jphys:019770038090110500

    27. [27]

      Oswald P P, Béhar J, Kléman M. Philos Mag A, 2006, 46(6): 899 − 914

    28. [28]

      Senyuk B I, Smalyukh I I, Lavrentovich O D. Phys Rev E, 2006, 74(1): 011712  doi: 10.1103/PhysRevE.74.011712

    29. [29]

      Wolf C, Menzel A M. J Phys Chem B, 2008, 112(16): 5007 − 5013  doi: 10.1021/jp710153k

    30. [30]

      Folks W R, Reznikov Y A, Yarmolenko S N, Lavrentovich O D. Mol Cryst Liq Cryst, 1997, 292(1): 183 − 197  doi: 10.1080/10587259708031930

    31. [31]

      Michel J P, Lacaze E, Goldmann M, Gailhanou M, de Boissieu M, Alba M. Phys Rev Lett, 2006, 96(2): 027803  doi: 10.1103/PhysRevLett.96.027803

    32. [32]

      Kim D S, Cha Y J, Gim M H, Lavrentovich O D, Yoon D K. ACS Appl Mater Interfaces, 2016, 8(18): 11851 − 11856  doi: 10.1021/acsami.6b01767

    33. [33]

      Gharbi I, Missaoui A, Demaille D, Lacaze E, Rosenblatt C. Crystals, 2017, 7(12): 358  doi: 10.3390/cryst7120358

    34. [34]

      Kim D S, Suh A, Yang S, Yoon D K. J Colloid Interface Sci, 2018, 513: 585 − 591  doi: 10.1016/j.jcis.2017.11.033

    35. [35]

      Guo Q, Zhao X J, Zhao H J, Chigrinov V G. Opt Lett, 2015, 40(10): 2413 − 2416  doi: 10.1364/OL.40.002413

    36. [36]

      Bahr C, Kitzerow H S. Chirality Liq Cryst. New York: Springer, 2001. 115 – 158

    37. [37]

      Bisoyi H K, Bunning T J, Li Q. Adv Mater, 2018, 30(25): 1706512  doi: 10.1002/adma.201706512

    38. [38]

      Eelkema R, Pollard M M, Katsonis N, Vicario J, Broer D J, Feringa B L. J Am Chem Soc, 2006, 128(44): 14397 − 14407  doi: 10.1021/ja065334o

    39. [39]

      Ryabchun A, Bobrovsky A, Stumpe J, Shibaev V. Adv Opt Mater, 2015, 3(9): 1273 − 1279  doi: 10.1002/adom.201500159

    40. [40]

      Ma L L, Duan W, Tang M J, Chen L J, Liang X, Lu Y Q, Hu W. Polymers, 2017, 9(12): 295  doi: 10.3390/polym9070295

    41. [41]

      Ma L L, Li S S, Li W S, Ji W, Luo B, Zheng Z G, Cai Z P, Chigrinov V, Lu Y Q, Hu W, Chen L J. Adv Opt Mater, 2015, 3(12): 1691 − 1696  doi: 10.1002/adom.201500403

    42. [42]

      Ryabchun A, Bobrovsky A, Stumpe J, Shibaev V. Adv Opt Mater, 2015, 3(10): 1462 − 1469  doi: 10.1002/adom.201500293

    43. [43]

      Zheng Z G, Li Y, Bisoyi H K, Wang L, Bunning T J, Li Q. Nature, 2016, 531(7594): 352 − 356  doi: 10.1038/nature17141

    44. [44]

      Jau H C, Li Y, Li C C, Chen C W, Wang C T, Bisoyi H K, Lin T H, Bunning T J, Li Q. Adv Opt Mater, 2015, 3(2): 166 − 170  doi: 10.1002/adom.201400457

    45. [45]

      Whitesides G M. Nature, 2006, 442(7101): 368 − 373  doi: 10.1038/nature05058

    46. [46]

      Monat C, Domachuk P, Eggleton B. Nat Photon, 2007, 1(2): 106 − 114  doi: 10.1038/nphoton.2006.96

    47. [47]

      Chen Q, Bae S C, Granick S. Nature, 2011, 469(7330): 381 − 384  doi: 10.1038/nature09713

    48. [48]

      Pileni M P. Nat Mater, 2003, 2(3): 145 − 150  doi: 10.1038/nmat817

    49. [49]

      Eelkema R, Pollard M M, Vicario J, Katsonis N, Ramon B S, Bastiaansen C W, Broer D J, Feringa B L. Nature, 2006, 440: 163  doi: 10.1038/440163a

    50. [50]

      Coles H, Morris S. Nat Photonics, 2010, 4(30): 676 − 685

    51. [51]

      Ha N Y, Ohtsuka Y, Jeong S M, Nishimura S, Suzaki G, Takanishi Y, Ishikawa K, Takezoe H. Nat Mater, 2008, 7(1): 43 − 47  doi: 10.1038/nmat2045

    52. [52]

      Gu C, Yeh P. Displays, 1999, 20(5): 237 − 257  doi: 10.1016/S0141-9382(99)00028-1

    53. [53]

      Kobashi J, Yoshida H, Ozaki M. Phys Rev Lett, 2016, 116(25): 253903  doi: 10.1103/PhysRevLett.116.253903

    54. [54]

      Chen P, Ma L L, Duan W, Chen J, Ge S J, Zhu Z H, Tang M J, Xu R, Gao W, Li T, Hu W, Lu Y Q. Adv Mater, 2018, 30(10): 1705865  doi: 10.1002/adma.201705865

    55. [55]

      Li C C, Chen C W, Yu C K, Jau H C, Lv J A, Qing X, Lin C F, Cheng C Y, Wang C Y, Wei J, Yu Y L, Lin T H. Adv Opt Mater, 2017, 5(4): 1600824  doi: 10.1002/adom.201600824

    56. [56]

      Li J, Bisoyi H K, Tian J, Guo J, Li Q. Adv Mater, 2019, 31(10): 1807751  doi: 10.1002/adma.201807751

    57. [57]

      Zheng Z G, Liu B W, Zhou L, Wang W, Hu W, Shen D. J Mater Chem C, 2015, 3(11): 2462 − 2470  doi: 10.1039/C4TC02832E

    58. [58]

      Kopp V I, Fan B, Vithana H K M, Genack A Z. Opt Lett, 1998, 23(21): 1707 − 1709  doi: 10.1364/OL.23.001707

    59. [59]

      Schmidtke J, Stille W. Eur Phys J B, 2003, 31(2): 179 − 194  doi: 10.1140/epjb/e2003-00022-x

    60. [60]

      Chanishvili A, Chilaya G, Petriashvili G, Barberi R, Bartolino R, Cipparrone G, Mazzulla A, Gimenez R, Oriol L, Pinol M. Appl Phys Lett, 2005, 86(5): 051107  doi: 10.1063/1.1855405

    61. [61]

      Huang W B, Yuan C L, Shen D, Zheng Z G. J Mater Chem C, 2017, 5(28): 6923 − 6928  doi: 10.1039/C7TC02076G

    62. [62]

      Chen L J, Li Y N, Fan J, Bisoyi H K, Weitz D A, Li Q. Adv Opt Mater, 2014, 2(9): 845 − 848  doi: 10.1002/adom.201400166

    63. [63]

      Kikuchi H. Struct Bonding, 2008, 128: 99 − 117

    64. [64]

      Jin O, Fu D, Wei J, Yang H, Guo J. RSC Adv, 2014, 4(54): 28597 − 28600  doi: 10.1039/C4RA02680B

    65. [65]

      Yang D K, Crooker P P. Liq Cryst, 1990, 7(3): 411 − 419  doi: 10.1080/02678299008033817

    66. [66]

      Yoshizawa A. RSC Adv, 2013, 3(48): 25475 − 25497  doi: 10.1039/c3ra43546f

    67. [67]

      Cao W, Munoz A, Palffy M P, Taheri B. Nat Mater, 2002, 1(2): 111 − 113  doi: 10.1038/nmat727

    68. [68]

      Kim J H, Kim Y H, Jeong H S, Youn E K, Jung H T. J Mater Chem, 2011, 21(45): 18381 − 18385  doi: 10.1039/c1jm13432a

    69. [69]

      Yokoyama S, Mashiko S, Kikuchi H, Uchida K, Nagamura T. Adv Mater, 2006, 18(1): 48 − 51  doi: 10.1002/adma.200501355

    70. [70]

      Guo J, Wang J, Zhang J, Shi Y, Wang X, Wei J. J Mater Chem, 2014, 2(43): 9159 − 9166

    71. [71]

      Yoshida H, Kobashi J. Liq Cryst, 2016, 43(13-15): 1909 − 1919

    72. [72]

      He W L, Li M, Liu S Q, Wei M J, Liu C, Li L L, Yang Z, Wang D, Cao H. Liq Cryst, 2017, 45(3): 370 − 380

    73. [73]

      Li Y, Huang S, Zhou P, Liu S, Lu J, Li X, Su Y. Adv Mater Technol, 2016, 1(8): 1600102  doi: 10.1002/admt.201600102

    74. [74]

      Bisoyi H K, Li Q. Acc Chem Res, 2014, 47(10): 3184 − 3195  doi: 10.1021/ar500249k

    75. [75]

      Ge Z, Gauza S, Jiao M, XianY H, Wu S T. Appl Phys Lett, 2009, 5(7): 250 − 256

    76. [76]

      He W, Pan G, Yang Z, Zhao D, Niu G, Huang W, Yuan X, Guo J B, Cao H, Yang H. Adv Mater, 2009, 21(20): 2050 − 2053  doi: 10.1002/adma.200802927

    77. [77]

      Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Kikuchi H, Ozaki M. Appl Phys Express, 2009, 2(12): 12150

    78. [78]

      Lee M, Hur S T, Higuchi H, Song K, Choi S W, Kikuchi H. J Mater Chem, 2010, 20(28): 5765 − 5968  doi: 10.1039/c0jm90036b

    79. [79]

      Yoshizawa A, Sato M, Rokunohe J. J Mater Chem, 2005, 15(32): 3285 − 3290  doi: 10.1039/b506167a

    80. [80]

      Zheng Z G, Shen D, Huang P. New J Phys, 2010, 12(11): 113018  doi: 10.1088/1367-2630/12/11/113018

    81. [81]

      Wang M, Hu W, Wang L, Guo D Y, Lin T H, Zhang L, Yang H. J Mater Chem C, 2018, 6(29): 7740 − 7744  doi: 10.1039/C8TC02200C

    82. [82]

      Gim M J, Hur S T, Park K W, Lee M, Choi S W, Takezoe H. Chem Commun, 2012, 48(80): 9968 − 9970  doi: 10.1039/c2cc34114j

    83. [83]

      Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T. Nat Mater, 2002, 1(1): 64 − 68  doi: 10.1038/nmat712

    84. [84]

      Rozic B, Tzitzios V, Karatairi E, Tkalec U, Nounesis G, Kutnjak Z, Cordoyiannis G, Rosso R, Virga E G, Musevic I, Kralj S. Eur Phys J E, 2011, 34(2): 17  doi: 10.1140/epje/i2011-11017-8

    85. [85]

      Wu Y, Zhou Y, Yin L, Zou G, Zhang Q. Liq Cryst, 2013, 40(6): 726 − 733  doi: 10.1080/02678292.2013.783937

    86. [86]

      Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L G, Ruoff R S. Science, 2013, 342(6159): 720 − 723  doi: 10.1126/science.1243879

    87. [87]

      Zheng Z G, Yuan C L, Hu W, Bisoyi H K, Tang M J, Liu Z, Sun P Z, Yang W Q, Wang X Q, Shen D, Li Y N, Ye F F, Lu Y Q, Li G Q, Li Q. Adv Mater, 2017, 29(42): 1703165  doi: 10.1002/adma.201703165

    88. [88]

      Kim K, Hur S T, Kim S, Jo S Y, Lee B R, Song M H, Choi S W. J Mater Chem C, 2015, 3(21): 5383 − 5388  doi: 10.1039/C5TC00420A

    89. [89]

      Lin T H, Li Y, Wang C T, Jau H C, Chen C W, Li C C, Bisoyi H K, Bunning T J, Li Q. Adv Mater, 2013, 25(36): 5050 − 5054  doi: 10.1002/adma.201300798

  • 加载中
    1. [1]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, doi: 10.3866/PKU.DXHX202309046

    2. [2]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, doi: 10.12461/PKU.DXHX202401054

    3. [3]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, doi: 10.3866/PKU.DXHX202309033

    4. [4]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, doi: 10.12461/PKU.DXHX202407061

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240290

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, doi: 10.12461/PKU.DXHX202407066

    9. [9]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230468

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, doi: 10.3866/PKU.DXHX202311085

    14. [14]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, doi: 10.12461/PKU.DXHX202403065

    15. [15]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, doi: 10.12461/PKU.DXHX202403104

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240302

    18. [18]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, doi: 10.3866/PKU.DXHX202308095

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230225

    20. [20]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, doi: 10.3866/PKU.DXHX202310001

Metrics
  • PDF Downloads(0)
  • Abstract views(208)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return