Citation: Sang Cheng, Yu-shu Li, Jia-jie Liang, Qi Li. Polymer Dielectrics and Their Nanocomposites for Capacitive Energy Storage Applications[J]. Acta Polymerica Sinica doi: 10.11777/j.issn1000-3304.2020.20001 shu

Polymer Dielectrics and Their Nanocomposites for Capacitive Energy Storage Applications

  • Electrostatic capacitors with extremely fast discharge speed and ultra-high power density, are an important class of energy storage element in advanced electrical and electronic systems. Polymer dielectrics are widely employed as capacitor dielectric materials because of their high breakdown strength, the ability to self-heal, low loss and low cost. However, polymer dielectrics usually show low energy density and poor thermal stability, which restrict their applications in high power electronics and compact power modules. In order to improve the energy density and temperature capability of polymer dielectrics, we have carried out a series of study. This review focuses on our recent progress in developing high-performance polymer-based dielectric materials and in understanding the corresponding dielectric phenomena. The main content includes the synthesis and characterization of PVDF-based ferroelectric polymers, copolymers and nanocomposites, and polymer-based high temperature dielectrics, as well as the investigation of interfacial property in the polymer matrix/inorganic nanoparticle composite system. At the end of this review, we summarize the existing challenges and propose the future directions in the field of polymer-based capacitor dielectrics.
  • 加载中
    1. [1]

      Sarjeant W J, Clelland I W, Price R A. Proc IEEE, 2001, 89(6): 846 − 855  doi: 10.1109/5.931475

    2. [2]

      Irvine J T S, Sinclair D C, West A R. Adv Mater, 1990, 2(3): 132 − 138  doi: 10.1002/adma.19900020304

    3. [3]

      Buttay C, Planson D, Allard B, Bergogne D, Bevilacqua P, Joubert C, Lazar M, Martin C, Morel H, Tournier D, Raynaud C. Mater Sci and Eng: B, 2011, 176(4): 283 − 288  doi: 10.1038/ncomms3845

    4. [4]

      Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M. Science, 2006, 313(5785): 334 − 336  doi: 10.1126/science.1127798

    5. [5]

      Laihonen S J, Gafvert U, Schutte T, Gedde W. IEEE Trns Dielectr Electr Insul, 2007, 14(2): 275 − 286  doi: 10.1109/TDEI.2007.344604

    6. [6]

      Laihonen S J. Polypropylene: Morphology, defects and electrical breakdown. Stockholm: KTH, 2005. Oai: DiVA.org:kth-268

    7. [7]

      Ho J, Ramprasad R, Boggs S. IEEE Trns Dielectr Electr Insul, 2007, 14(5): 1295 − 1301  doi: 10.1109/TDEI.2007.4339492

    8. [8]

      Watson J, Castro G. J Mater Sci-Mater Electron, 2015, 26(12): 9226 − 9235  doi: 10.1007/s10854-015-3459-4

    9. [9]

      Tan D, Zhang L, Chen Q, Irwin P. J Electron Mater, 2014, 43(12): 4569 − 4575  doi: 10.1007/s11664-014-3440-7

    10. [10]

      Zhang X M, Liu J G, Yang S Y. Rev Adv Mater Sci, 2016, 46(1): 22 − 38

    11. [11]

      Zou C, Zhang Q, Zhang S, Kushner D, Zhou X, Bernard R, Orchard R J. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom, 2011, 29(6): 061401

    12. [12]

      Li Q, Wang Q. Macromol Chem Phys, 2016, 217(11): 1228 − 1244  doi: 10.1002/macp.201500503

    13. [13]

      Zhu L, Wang Q. Macromolecules, 2012, 45(7): 2937 − 2954  doi: 10.1021/ma2024057

    14. [14]

      Gadinski M R, Chanthad C, Han K, Dong L, Wang Q. Polym Chem, 2014, 5(20): 5957 − 5966  doi: 10.1039/C4PY00690A

    15. [15]

      Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S, Zhang Q M. Appl Phys Lett, 2009, 94(16) − 162901

    16. [16]

      Gadinski M R, Han K, Li Q, Zhang G, Reainthippayasakul W, Wang Q. ACS Appl Mater Interfaces, 2014, 6(21): 18981 − 18988  doi: 10.1021/am504874f

    17. [17]

      Gadinski M R, Li Q, Zhang G, Zhang X, Wang Q. Macromolecules, 20158, 48(8): 2731 − 2739

    18. [18]

      Thakur V K, Tan E J, Lin M F, Lee P S. Polym Chem, 2011, 2(9): 2000  doi: 10.1039/c1py00225b

    19. [19]

      Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q. Nat Commun, 2013, 4: 2845

    20. [20]

      Tseng J K, Tang S, Zhou Z, Mackey M, Carr J M, Mu R, Flandin L, Schuele D E, Baer E, Zhu L. Polymer (Guildf), 2014, 55(1): 8 − 14  doi: 10.1016/j.polymer.2013.11.042

    21. [21]

      Mackey M, Schuele D E, Zhu L, Flandin L, Wolak M A, Shirk J S, Hiltner A, Baer E. Macromolecules, 2012, 45(4): 1954 − 1962  doi: 10.1021/ma202267r

    22. [22]

      Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W. Adv Mater, 2007, 19(7): 1001 − 1005  doi: 10.1002/adma.200602422

    23. [23]

      Lu Y C, Yu S, Zeng X, Sun R, Wong CP. IET Nanodielectrics, 2018, 1(4): 137 − 142  doi: 10.1049/iet-nde.2018.0015

    24. [24]

      Tang H, Lin Y, Andrews C, Sodano H A. Nanotechnology, 2011, 22(1): 015702  doi: 10.1088/0957-4484/22/1/015702

    25. [25]

      Li Q, Zhang G, Zhang X, Jiang S, Zeng Y, Wang Q. Adv Mater, 2015, 27(13): 2236 − 2241  doi: 10.1002/adma.201405495

    26. [26]

      Li J, Seok S, Chu B, Dogan F, Zhang Q, Wang Q. Adv Mater, 2009, 21(2): 217 − 221  doi: 10.1002/adma.200801106

    27. [27]

      Han K, Li Q, Chen Z, Gadinski M R, Dong L, Xiong C, Wang Q. J Mater Chem C, 2013, 1(42): 7034 − 7042  doi: 10.1039/c3tc31556h

    28. [28]

      Li Q, Zhang G, Liu F, Han K, Gadinski M R, Xiong C, Wang Q. Energy Environ Sci, 2015, 8(3): 922 − 931  doi: 10.1039/C4EE02962C

    29. [29]

      Li Q, Han K, Gadinski M R, Zhang G, Wang Q. Adv Mater, 2014, 26(36): 6244 − 6249  doi: 10.1002/adma.201402106

    30. [30]

      Liu F, Li Q, Li Z, Dong L, Xiong C, Wang Q. Compos Part A Appl Sci Manuf, 2018, 109(September 2017): 597 − 603

    31. [31]

      Liu F, Li Q, Cui J, Li Z, Yang G, Liu Y, Dong L, Xiong C, Wang H, Wang Q. Adv Funct Mater, 2017, 27(20): 1606292  doi: 10.1002/adfm.201606292

    32. [32]

      Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P. Adv Energy Mater, 2019, 9(36): 1 − 10

    33. [33]

      Han K, Li Q, Chanthad C, Gadinski M R, Zhang G, Wang Q. Adv Funct Mater, 2015, 25(23): 3505 − 3513  doi: 10.1002/adfm.201501070

    34. [34]

      Luo Yang(罗杨), Wu Guangning(吴广宁), Peng Jia(彭佳), Zhang Yiqiang(张依强), Xu Huihui(徐慧慧), Wang Peng(王鹏). High Voltage Engineering(高电压技术), 2012, 38(9): 2455 − 2464

    35. [35]

      Bhimasankaram T, Suryanarama S V, Prasad G. Curr Sci, 1998, 74(11): 967 − 976

    36. [36]

      Mendes S F, Costa C M, Caparrós C, Sencadas V, Lanceros-Méndez S. J Mater Sci, 2012, 47(3): 1378 − 1388  doi: 10.1007/s10853-011-5916-7

    37. [37]

      Lewis T J. IEEE Trns Dielectr Electr Insul, 1994, 1(5): 812 − 825  doi: 10.1109/94.326653

    38. [38]

      Lewis T J. IEEE Trns Dielectr Electr Insul, 2004, 11(5): 739 − 753  doi: 10.1109/TDEI.2004.1349779

    39. [39]

      Nelson J K. The promise of dielectric nanocomposites. In: Proceedings of Conference Record of the 2006 IEEE International Symposium on Electrical Insulation. Toronto: IEEE, 2006. 452 – 457

    40. [40]

      Roy M, Nelson J K, MacCrone R K, Schadler L S, Reed C W, Keefe R, Zenger W. IEEE Trns Dielectr Electr Insul, 2005, 12(4): 629 − 643  doi: 10.1109/TDEI.2005.1511089

    41. [41]

      Huang Xingyi(黄兴溢), Jiang Pingkai(江平开), Jin Tianxiong(金天雄), Kim Chonung, Ke Qingquan(柯清泉). Prog Chem(化学进展), 2007, 19(11): 1776 − 1782

    42. [42]

      Tanaka T, Kozako M, Fuse N, Ohki Y. IEEE Trns Dielectr Electr Insul, 2005, 12(4): 669 − 681  doi: 10.1109/TDEI.2005.1511092

    43. [43]

      Nelson J K, Fothergill J C. Nanotechnology, 2004, 15(5): 586 − 595  doi: 10.1088/0957-4484/15/5/032

    44. [44]

      Wang Liheng(王力衡). The Theory and Applications of Thermally Stimulated Current in Dielectrics(介质的热刺激电流理论及其应用). Beijing(北京): Science Press(科学出版社), 1988. 71 − 85

    45. [45]

      Ieda M. IEEE Trns Electr Insul, 1984, EI-19(3): 162 − 178  doi: 10.1109/TEI.1984.298741

    46. [46]

      Mizutani T. Behavior of charge carriers in organic insulating materials. In: Proceedings of 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Kansas City: IEEE, 2006. 1 − 10

    47. [47]

      Nešpůrek S, Smejtek P. Czech J Phys B, 1972, 22(2): 160 − 175  doi: 10.1007/BF01709967

    48. [48]

      Rizzo A, Micocci G, Tepore A. J Appl Phys, 1977, 48(8): 3415 − 3424  doi: 10.1063/1.324185

    49. [49]

      Huang X Y, Jiang P K, Yin Y. Appl Phys Lett, 2009, 95(24): 242905  doi: 10.1063/1.3275732

    50. [50]

      Peng S M, He J L, Hu J, Huang X Y, Jiang P K. IEEE Trns Dielectr Electr Insul, 2015, 22(3): 1512 − 1519  doi: 10.1109/TDEI.2015.7116346

    51. [51]

      Peng S M, Dang B, Zhou Y, Hu J, He J L. J Phys Chem C, 2016, 120(43): 24754 − 24761  doi: 10.1021/acs.jpcc.6b07408

    52. [52]

      Chan C M, Wu J S, Li J X, Cheung Y K. Polymer, 2002, 43(10): 2981 − 2992  doi: 10.1016/S0032-3861(02)00120-9

    53. [53]

      Tian Fuqiang(田付强), Yang Chun(杨春), He Lijuan(何丽娟), Han Bai(韩柏), Wang Yi(王毅), Lei Qingquan(雷清泉). Transactions of China Electrotechnical Society(电工技术学报), 2011, 26(3): 1 – 12

    54. [54]

      Cao Y, Irwin P C. The electrical conduction in polyimide nanocomposites. In: Proceedings of 2003 Annual Report- Conference on Electrical Insulation and Dielectric Phenomena. Albuquerque: IEEE, 2003. 116 − 119

    55. [55]

      He Jinliang(何金良), Peng Simin(彭思敏), Zhou Yao(周垚), Yang Yang(杨洋), Hu Jun(胡军). Proceedings of the Chinese Society of Electrical Engineering(中国电机工程学报), 2016, 36(24): 6596 − 6605

    56. [56]

      Jespersen T S, Nygard J. Appl Phys Lett, 2007, 90(18): 183108  doi: 10.1063/1.2734920

    57. [57]

      Labardi M, Prevosto D, Nguyen K H, Capaccioli S, Lucchesi M, Rolla P. J Vac Sci Technol B, 2010, 28(3): C4D11 − C4D17  doi: 10.1116/1.3368597

    58. [58]

      Peng S M, Zeng Q B, Yang X, Hu J, Q iu, X H, He J L. Sci Rep, 2016, 6: 38978  doi: 10.1038/srep38978

    59. [59]

      Peng S M, Yang X, Yang Y, Wang S J, Zhou Y, Hu J, Li Q. Adv Mater, 2019, 31(21): 1807722  doi: 10.1002/adma.201807722

    60. [60]

      Young R J, Lovell P A. Introduction to Polymers. London: Chapman & Hall, 1991. 312

    61. [61]

      Rabuffi M, Picci G. IEEE Trans Plasma Sci, 2002, 30(5): 1939 − 1942  doi: 10.1109/TPS.2002.805318

    62. [62]

      Chiu F C. Adv Mater Sci Eng, 2014, 2014: 578168

    63. [63]

      Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q. Ann Rev Mater Res, 2018, 48: 219 − 243  doi: 10.1146/annurev-matsci-070317-124435

    64. [64]

      Liaw D J, Wang K L, Huang Y C, Li K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7): 907 − 974  doi: 10.1016/j.progpolymsci.2012.02.005

    65. [65]

      Cozens J. IRE Transactions on Component Parts, 1959, 6(2): 114 − 118  doi: 10.1109/TCP.1959.1136278

    66. [66]

      Odian G. Principles of Polymerization. 3rd ed. New York: John Wiley & Sons, 1991. 313

    67. [67]

      Caliari L, Bettacchi P, Boni E, Montanari D, Gamberini A, Barbieri L, Bergamaschi F. CARTS Inter Proc-ECA, 2013

    68. [68]

      Ho J S, Greenbaum S G. ACS Appl Mater Interfaces, 2018, 10(35): 29189 − 29218  doi: 10.1021/acsami.8b07705

    69. [69]

      Attwood T E, Dawson P C, Freeman J L, Hoy L R J, Rose J B, Staniland P A. Polymer, 1981, 22(8): 1096 − 1103  doi: 10.1016/0032-3861(81)90299-8

    70. [70]

      Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U. Nature, 2015, 523(7562): 576  doi: 10.1038/nature14647

    71. [71]

      Pan J, Li K, Li J, Hsu T, Wang Q. Appl Phys Lett, 2009, 95(2): 022902  doi: 10.1063/1.3176219

    72. [72]

      Kirby A J. Polyimides: Materials Processing and Applications. Oxford: Pergamon Press, 1992. 235

    73. [73]

      Tan D, Zhang L, Chen Q, Irwin P. J Electron Mater, 2014, 43(12): 4569 − 4575  doi: 10.1007/s11664-014-3440-7

    74. [74]

      Bourbigot S, Flambard X. Fire Mater, 2002, 26(4-5): 155 − 168  doi: 10.1002/fam.799

    75. [75]

      Hammoud A N, Suthar J L. Characterization of polybenzimidazole (PBI) film at high temperatures. In IEEE International Symposium on Electrical Insulation. Toronto: IEEE, 1990. 449 − 451

    76. [76]

      Ehrlich P, Amborski L E, Burton R L. Journal of Research of the National Bureau of Standards, 1953, 51(4): 185 − 188  doi: 10.6028/jres.051.024

    77. [77]

      Sperati C A. High Performance Polymers: Their Origin and Development. Springer, Dordrecht, 1986: 267 − 278

    78. [78]

      Zhang S, Zou C, Kushner D I, Zhou X, Orchard R J, Zhang N, Zhang Q M. IEEE Trns Dielectr Electr Insul, 2012, 19(4): 1158 − 1166  doi: 10.1109/TDEI.2012.6259984

    79. [79]

      Mandelcorn L, Miller R L. High temperature, > 200 deg. C, polymer film capacitors. In: IEEE 35th International Power Sources Symposium. Cherry Hill, NJ: IEEE, 1992. 369 − 372

    80. [80]

      Tabatabaei-Yazdi Z, Mehdipour-Ataei S. Polym Adv Technol, 2015, 26(4): 308 − 314  doi: 10.1002/pat.3444

    81. [81]

      Coleman J N, Khan U, Gun’ko Y K. Adv Mater, 2006, 18(6): 689 − 706  doi: 10.1002/adma.200501851

    82. [82]

      Li H, Ai D, Ren L, Yao B, Han Z, Shen Z, Wang J, Chen L Q, Wang Q. Adv Mater, 2019, 1900875

    83. [83]

      Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L Q, Runt J, Zhang Q M. Nanoscale, 2017, 9(31): 10992 − 10997  doi: 10.1039/C7NR01932G

    84. [84]

      Li Q, Liu F, Yang T, Gadinski M R, Zhang G, Chen L Q, Wang Q. PNAS, 2016, 113(36): 9995 − 10000  doi: 10.1073/pnas.1603792113

    85. [85]

      Azizi A, Gadinski M R, Li Q, AlSaud M A, Wang J, Wang Y, Wang B, Liu F, Chen L Q, Alem N, Wang Q. Adv Mater, 2017, 29(35): 1701864  doi: 10.1002/adma.201701864

    86. [86]

      Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q. Adv Mater, 2018, 30(49): 1805672  doi: 10.1002/adma.201805672

  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240065

    2. [2]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, doi: 10.12461/PKU.DXHX202408056

    3. [3]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407025

    4. [4]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, doi: 10.12461/PKU.DXHX202404081

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, doi: 10.3866/PKU.DXHX202308045

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, doi: 10.3866/PKU.DXHX202401010

    9. [9]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, doi: 10.12461/PKU.DXHX202403083

    10. [10]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, doi: 10.12461/PKU.DXHX202407012

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2024.100041

    14. [14]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230388

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230312

    17. [17]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100072

    18. [18]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, doi: 10.3866/PKU.DXHX202401014

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240260

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(0)
  • Abstract views(352)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return