Citation: Bin Zhang. Atomic Force Microscopy Studies of Polymer Crystallization in Thin Film: Understanding the Formation Mechanism and Tuning the Properties[J]. Acta Polymerica Sinica, ;2020, 51(3): 221-238. doi: 10.11777/j.issn1000-3304.2019.19185 shu

Atomic Force Microscopy Studies of Polymer Crystallization in Thin Film: Understanding the Formation Mechanism and Tuning the Properties

  • Corresponding author: Bin Zhang, binzhang@zzu.edu.cn
  • Received Date: 21 October 2019
    Revised Date: 26 November 2019

  • Over the past decade, besides fundamental concepts, single-crystal engineering of functional polymers and its applications have attracted increasing attention. With the advances of multiparametric and multifunctional characterization, atomic force microscopy (AFM) not only can image the surface topography of polymer crystals in nanoscale while simultaneously mapping the physical properties, like the electrical and thermal properties, but also provides a unique way of linking molecular structures, crystallization conditions and post-treatment to properties. Furthermore, the nanoscale control afforded by scanning probe lithography (SPL) has prompted the development of a regulation of the polymer aggregation structures and surface patterns in thin films. To explicitly probe the mechanism of polymer crystallization, single layer lamella and few layer lamellae in thin films as a model system, combined with AFM can provide information on polymer nucleation and growth with high spatial and temporal resolution. On the other hand, to promote a better understanding of the nature of heterogeneities of metastable state within the lamellae, lamellar thickening/melting and self-seeding, the effects of annealing temperature and time on lamellar thickness of metastable folded-chain crystals have been investigated in polymer thin films.
  • 加载中
    1. [1]

      Stingelinstutzmann N, Smits E C P, Wondergem H J, Tanase C, Blom P W M, Smith P, De Leeuw D M. Nat Mater, 2005, 4(8): 601 − 606  doi: 10.1038/nmat1426

    2. [2]

      Jimenezsolomon M F, Song Q, Jelfs K E, Munozibanez M, Livingston A G. Nat Mater, 2016, 15(7): 760 − 767  doi: 10.1038/nmat4638

    3. [3]

      Li M, Wondergem H J, Spijkman M, Asadi K, Katsouras I, Blom P W M, De Leeuw D M. Nat Mater, 2013, 12(5): 433 − 438  doi: 10.1038/nmat3577

    4. [4]

      Treat N D, Malik J A N, Reid O, Yu L, Shuttle C G, Rumbles G, Hawker C J, Chabinyc M L, Smith P, Stingelin N. Nat Mater, 2013, 12(7): 628 − 633  doi: 10.1038/nmat3655

    5. [5]

      Hu Z, Tian M, Nysten B, Jonas A M. Nat Mater, 2009, 8(1): 62 − 67  doi: 10.1038/nmat2339

    6. [6]

      Zhou T, Wang B, Dong B, Li C Y. Macromolecules, 2012, 45(21): 8780 − 8789  doi: 10.1021/ma3019987

    7. [7]

      Ma L, Zhou Z, Zhang J, Sun X, Li H, Zhang J, Yan S. Macromolecules, 2017, 50(9): 3582 − 3589  doi: 10.1021/acs.macromol.7b00299

    8. [8]

      Gbabode G, Delvaux M, Schweicher G, Andreasen J W, Nielsen M M, Geerts Y H. Macromolecules, 2017, 50(15): 5877 − 5891  doi: 10.1021/acs.macromol.7b00441

    9. [9]

      Russell T P, Chai Y. Macromolecules, 2017, 50(12): 4597 − 4609  doi: 10.1021/acs.macromol.7b00418

    10. [10]

      Hou C, Yang T, Sun X, Ren Z, Li H, Yan S. J Phys Chem B, 2016, 120(1): 222 − 230  doi: 10.1021/acs.jpcb.5b09960

    11. [11]

      Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F. Macromolecules, 2016, 49(9): 3442 − 3451  doi: 10.1021/acs.macromol.6b00473

    12. [12]

      Zhong L W, Ren X K, Yang S, Chen E Q, Sun C X, Stroeks A, Yang T Y. Polymer, 2014, 55(16): 4332 − 4340  doi: 10.1016/j.polymer.2014.06.031

    13. [13]

      Yao Y, Dong H, Liu F, Russell T P, Hu W. Adv Mater, 2017, 29(29): 1701251  doi: 10.1002/adma.201701251

    14. [14]

      Duong D T, Phan H, Hanifi D, Jo P S, Nguyen T Q, Salleo A. Adv Mater, 2014, 26(35): 6069 − 6073  doi: 10.1002/adma.201402015

    15. [15]

      Gelmi A A. Probing nanoscale properties of organic conducting polymer interfaces using atomic force microscopy, University of Wollongong, 2012

    16. [16]

      Lin H N, Lin H L, Wang S S, Yu L S, Perng G Y, Chen S A, Chen S H. Appl Phys Lett, 2002, 81(14): 2572 − 2574  doi: 10.1063/1.1509464

    17. [17]

      Tan Zhongyin(谭忠印), Ma Jin(马金), Wang Chen(王琛), Bai Chunli(白春礼). Science China(中国科学), 1999, 29(2): 97 − 100

    18. [18]

      Qu Xiaozhong(屈小中), Jin Xigao(金熹高). Journal of Functional Polymers(功能高分子学报), 1999, 12(2): 218 − 224

    19. [19]

      Gong Jianru(宫建茹), Wan Lijun(万立骏), Bai Chunli(白春礼). University Chemistry(大学化学), 2003, 18(1): 7 − 11

    20. [20]

      Hu W. Phys Rep, 2018, 747: 1 − 50

    21. [21]

      Jiang X, Reiter G, Hu W. J Phys Chem B, 2016, 120(3): 566 − 571  doi: 10.1021/acs.jpcb.5b09324

    22. [22]

      Majumder S, Busch H, Poudel P, Mecking S, Reiter G. Macromolecules, 2018, 51(21): 8738 − 8745  doi: 10.1021/acs.macromol.8b01765

    23. [23]

      Li Zhaolei(李照磊), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1179 − 1197

    24. [24]

      Liu Xiao(刘枭), Wei Qianshi(魏千适), Chai Liguo(柴利国), Zhou Jianjun(周建军), Yan Dadong(严大东), Yan Shouke(闫寿科), Li Lin(李林). Acta Polymerica Sinica(高分子学报), 2013, (5): 654 − 659  doi: 10.3724/SP.J.1105.2013.12416

    25. [25]

      Yang Rong(杨榕), Li Hongmei(李红梅), Jiang Jing(姜菁), Zhou Dongshan(周东山). Acta Polymerica Sinica(高分子学报), 2018, (9): 96 − 103  doi: 10.11777/j.issn1000-3304.2018.18024

    26. [26]

      Chan C M, Li L. Adv Polym Sci, 2005, 188: 1 − 41

    27. [27]

      Hu W, Cai T, Ma Y, Hobbs J K, Farrance O, Reiter G. Faraday Discuss, 2009, 143: 129 − 141  doi: 10.1039/b901378d

    28. [28]

      Müller A, Michell R, Pérez R, Lorenzo A. Eur Polym J, 2015, 65: 132 − 154  doi: 10.1016/j.eurpolymj.2015.01.015

    29. [29]

      Cavallo D, Lorenzo A T, Müller A J. J Polym Sci, Part B: Polym Phys, 2016, 54(21): 2200 − 2209  doi: 10.1002/polb.24129

    30. [30]

      Cui K, Ma Z, Tian N, Su F, Liu D, Li L. Chem Rev, 2018, 118(4): 1840 − 1886  doi: 10.1021/acs.chemrev.7b00500

    31. [31]

      Tang X, Yang J, Xu T, Tian F, Xie C, Li L. Phys Rev Mater, 2017, 1(7): 073401  doi: 10.1103/PhysRevMaterials.1.073401

    32. [32]

      Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, Shen C. Eur Polym J, 2017, 91: 376 − 385  doi: 10.1016/j.eurpolymj.2017.04.016

    33. [33]

      Li X, Liu Y, Tian X, Cui K. J Polym Sci, Part B: Polym Phys, 2016, 54(16): 1573 − 1580  doi: 10.1002/polb.24051

    34. [34]

      Gao H, Vadlamudi M, Alamo R G, Hu W. Macromolecules, 2013, 46(16): 6498 − 6506  doi: 10.1021/ma400842h

    35. [35]

      Zhu X, Yan D, Yao H, Zhu P. Macromol Rapid Commun, 2000, 21(7): 354 − 357  doi: 10.1002/(SICI)1521-3927(20000401)21:7<354::AID-MARC354>3.0.CO;2-B

    36. [36]

      Chen E-Q, Weng X, Zhang A, Mann I, Harris F W, Cheng S Z, Stein R, Hsiao B S, Yeh F. Macromol Rapid Commun, 2001, 22(8): 611 − 615  doi: 10.1002/1521-3927(20010501)22:8<611::AID-MARC611>3.0.CO;2-J

    37. [37]

      Hamad F G, Colby R H, Milner S T. Macromolecules, 2015, 48(19): 7286 − 7299  doi: 10.1021/acs.macromol.5b01408

    38. [38]

      Li H, Yan S. Macromolecules, 2011, 44(3): 417 − 428  doi: 10.1021/ma1023457

    39. [39]

      Li H, Jiang S, Wang J, Wang D, Yan S. Macromolecules, 2003, 36(8): 2802 − 2807  doi: 10.1021/ma034062w

    40. [40]

      Jiang X, Liu X, Liao Q, Wang X, Yan D D, Huo H, Li L, Zhou J J. Soft Matter, 2014, 10(18): 3238 − 3244  doi: 10.1039/c3sm52975d

    41. [41]

      Zhang G, Cao Y, Jin L, Zheng P, Van Horn R M, Lotz B, Cheng S Z D, Wang W. Polymer, 2011, 52(4): 1133 − 1140  doi: 10.1016/j.polymer.2011.01.002

    42. [42]

      Zhang B, Chen J, Baier M C, Mecking S, Reiter R, Mülhaupt R, Reiter G. Macromol Rapid Commun, 2015, 36(2): 181 − 189  doi: 10.1002/marc.201400433

    43. [43]

      Zhang G, Jin L, Zheng P, Shi A C, Wang W. Polymer, 2010, 51(2): 554 − 562  doi: 10.1016/j.polymer.2009.11.061

    44. [44]

    45. [45]

      Cheng Zhengdi(程正迪), Zhu Lei(祝磊), Li Yuren(李育人). Polymer Bulletin(高分子通报), 1999, (3): 28 − 33

    46. [46]

      Blundell D, Keller A. J Macromol Sci B, 1968, 2(2): 301 − 336  doi: 10.1080/00222346808212454

    47. [47]

      Strobl G. Prog Polym Sci, 2006, 31(4): 398 − 442  doi: 10.1016/j.progpolymsci.2006.01.001

    48. [48]

      Hiejima Y, Takeda K, Nitta K. Macromolecules, 2017, 50(15): 5867 − 5876  doi: 10.1021/acs.macromol.7b00229

    49. [49]

      Roe R J, Gieniewski C, Vadimsky R G. J Polym Sci, Part B: Polym Phys, 1973, 11(8): 1653 − 1670  doi: 10.1002/pol.1973.180110813

    50. [50]

      Loos J, Tian M. Polymer, 2006, 47(15): 5574 − 5581  doi: 10.1016/j.polymer.2004.12.064

    51. [51]

      Zhang F, Baralia G G, Nysten B, Jonas A M. Macromolecules, 2011, 44(19): 7752 − 7757  doi: 10.1021/ma2012249

    52. [52]

      Zhai X, Zhang G, Ma Z, Tang X, Wang W. Macromol Chem Phys, 2007, 208(6): 651 − 657  doi: 10.1002/macp.200600511

    53. [53]

      Tang X F, Wen X J, Zhai X M, Xia N, Wang W, Wegner G, Wu Z H. Macromolecules, 2007, 40(12): 4386 − 4388  doi: 10.1021/ma070414d

    54. [54]

      Lee S W, Chen E, Zhang A, Yoon Y, Moon B S, Lee S, Harris F W, Cheng, S Z D, von Meerwall E D, Hsiao B S. Macromolecules, 1996, 29(27): 8816 − 8823  doi: 10.1021/ma960048q

    55. [55]

      Chen E Q, Lee S W, Zhang A, Moon B-S, Honigfort P S, Mann I, Lin H M, Harris F W, Cheng, S Z D, Hsiao B S. Polymer, 1999, 40(16): 4543 − 4551  doi: 10.1016/S0032-3861(99)00069-5

    56. [56]

      Zardalidis G, Mars J, Allgaier J, Mezger M, Richter D, Floudas G. Soft Matter, 2016, 12(39): 8124 − 8134  doi: 10.1039/C6SM01622G

    57. [57]

      Sun X, Li H, Zhang X, Wang D, Schultz J M, Yan S. Macromolecules, 2010, 43(1): 561 − 564  doi: 10.1021/ma9019784

    58. [58]

      Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat Mater, 2009, 8(4): 348 − 353  doi: 10.1038/nmat2405

    59. [59]

      Wang B, Tang S, Wang Y, Shen C, Reiter R, Reiter G, Chen J, Zhang B. Macromolecules, 2018, 51(5): 1626 − 1635  doi: 10.1021/acs.macromol.7b02445

    60. [60]

      Huang Y, Xia X, Liu Z, Yang W, Zhu C, Xie D, Chen R, Yang M. Mate Today Commun, 2017, 12: 43 − 54  doi: 10.1016/j.mtcomm.2017.06.005

    61. [61]

      Gao Y, Dong X, Wang L, Liu G, Liu X, Tuinea-Bobe C, Whiteside B, Coates P, Wang D, Han C C. Polymer, 2015, 73: 91 − 101  doi: 10.1016/j.polymer.2015.07.029

    62. [62]

      Yang H, Liu D, Ju J, Li J, Wang Z, Yan G, Ji Y, Zhang W, Sun G, Li L. Macromolecules, 2016, 49(23): 9080 − 9088  doi: 10.1021/acs.macromol.6b01945

    63. [63]

      Yang Haoran(杨皓然), Ju Jianzhu(鞠见竹), Lu Jie(卢杰), Chang Jiarui(常家瑞), Su Fengmei(苏凤梅), Li Liangbin(李良彬). Acta Polymerica Sinica(高分子学报), 2017, (9): 1462 − 1470

    64. [64]

      Yang H, Zhang R, Wang L, Zhang J, Yu X, Liu J, Xing R, Geng Y, Han Y. Macromolecules, 2015, 48(20): 7557 − 7566  doi: 10.1021/acs.macromol.5b01804

    65. [65]

      Michell R M, Müller A J. Prog Polym Sci, 2016, 54: 183 − 213

    66. [66]

      Zhang B, Chen J, Freyberg P, Reiter R, Mülhaupt R, Xu J, Reiter G. Macromolecules, 2015, 48(5): 1518 − 1523  doi: 10.1021/ma502345p

    67. [67]

      Chen J, Li L, Zhou D, Xu J, Xue G. Macromolecules, 2014, 47(10): 3497 − 3501  doi: 10.1021/ma500188b

    68. [68]

      Li Sijia(李思佳), Zhang Wanxi(张万喜), Yao Weiguo(姚卫国), Shi Tongfei(石彤非). Chemical Journal of Chinese Universities(高等学校化学学报), 2015, 36(6): 1133 − 1139

    69. [69]

      Zhu Dunshen(朱敦深), Shou Xingxian(寿兴贤), Liu Yixin(刘一新), Chen Erqiang(陈尔强), Cheng Zhengdi(程正迪). Acta Polymerica Sinica(高分子学报), 2006, (4): 553 − 556

    70. [70]

      Diao Y, Zhou Y, Kurosawa T, Shaw L, Wang C, Park S, Guo Y, Reinspach J A, Gu K, Gu X. Nat Commun, 2015, 6: 7955  doi: 10.1038/ncomms8955

    71. [71]

      Diao Y, Tee B C, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T Hoon, Xue G, Mannsfeld S C B. Nat Mater, 2013, 12(7): 665 − 671  doi: 10.1038/nmat3650

    72. [72]

      Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y. Macromol Chem Phys, 2003, 204(15): 1822 − 1831  doi: 10.1002/macp.200350044

    73. [73]

      Fujita M, Takikawa Y, Sakuma H, Teramachi S, Kikkawa Y. Macromol Chem Phys, 2007, 208(17): 1862 − 1870  doi: 10.1002/macp.200700208

    74. [74]

      Jradi K, Bistac S, Schmitt M, Schmatulla A, Reiter G. Eur Phys J E, 2009, 29(4): 383 − 389  doi: 10.1140/epje/i2009-10480-0

    75. [75]

      Kong X M, He S G, Wang Z, Chen Y, Xie X M. Acta Polymerica Sinica(高分子学报), 2003, (4): 571 − 576

    76. [76]

      Ren Z, Zhang X, Li H, Sun X, Yan S. Chem Commun, 2016, 52(73): 10972 − 10975  doi: 10.1039/C6CC05522B

    77. [77]

      Liu Q, Sun X, Li H, Yan S. Polymer, 2013, 54(17): 4404 − 4421  doi: 10.1016/j.polymer.2013.04.066

    78. [78]

      Nie Y, Zhao Y, Matsuba G, Hu W. Macromolecules, 2018, 51(2): 480 − 487  doi: 10.1021/acs.macromol.7b02357

    79. [79]

      Hu W, Frenkel D, Mathot V. Macromolecules, 2002, 35(19): 7172 − 7174  doi: 10.1021/ma0255581

    80. [80]

      Weathers A, Khan Z U, Brooke R, Evans D, Pettes M T, Andreasen J W, Crispin X, Shi L. Adv Mater, 2015, 27(12): 2101 − 2106  doi: 10.1002/adma.201404738

    81. [81]

      Zhang T, Wu X, Luo T. J Phys Chem C, 2014, 118(36): 21148 − 21159  doi: 10.1021/jp5051639

    82. [82]

      Wang Z, Carter J A, Lagutchev A, Koh Y K, Seong N H, Cahill D G, Dlott D D. Science, 2007, 317(5839): 787 − 790  doi: 10.1126/science.1145220

    83. [83]

      Shen S, Henry A, Tong J, Zheng R, Chen G. Nat Nanotechnol, 2010, 5(4): 251 − 255  doi: 10.1038/nnano.2010.27

    84. [84]

      Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R. Nat Nanotechnol, 2014, 9(5): 384 − 390  doi: 10.1038/nnano.2014.44

    85. [85]

      Henry A, Chen G. Phys Rev Lett, 2008, 101(23): 235502  doi: 10.1103/PhysRevLett.101.235502

    86. [86]

      Chandran S, Reiter G. Phys Rev Lett, 2016, 116(8): 088301  doi: 10.1103/PhysRevLett.116.088301

    87. [87]

      Brochardwyart F, Debregeas G, R. Fondecave A, Martin P Macromolecules, 1997, 30(4): 1211 − 1213  doi: 10.1021/ma960929x

    88. [88]

      Xue L, Han Y. Prog Mater Sci, 2012, 57(6): 947 − 979  doi: 10.1016/j.pmatsci.2012.01.003

    89. [89]

      Wu L, Dong Z, Kuang M, Li Y, Li F, Jiang L, Song Y. Adv Funct Mater, 2015, 25(15): 2237 − 2242  doi: 10.1002/adfm.201404559

    90. [90]

      Peng Juan(彭娟), Cui Liang(崔亮), Luo Chunxia(罗春霞), Xing Rubo(邢汝博), Han Yanchun(韩艳春). Chinese Science Bulletin(科学通报), 2009, 6(54): 679 − 695

    91. [91]

      Kan X, Xiao C, Li X, Su B, Wu Y, Jiang W, Wang Z, Jiang L. ACS Appl Mater Interfaces, 2016, 8(29): 18978 − 18984  doi: 10.1021/acsami.6b04163

    92. [92]

      Sun Jiazhen(孙加振), Bao Bin(鲍斌), Wang Si(王思), Zhang Xingye(张兴业), Song Yanlin(宋延林). Polymer Bulletin(高分子通报), 2015, (9): 44 − 60

    93. [93]

      Reiter G. Phys Rev Lett, 1992, 68(1): 75 − 79  doi: 10.1103/PhysRevLett.68.75

    94. [94]

      Zhang H, Xu L, Lai Y, Shi T. Phys Chem Chem Phys, 2016, 18(24): 16310 − 16316  doi: 10.1039/C6CP02447E

    95. [95]

      Braun H-G, Meyer E. Int J Mol Sci, 2013, 14(2): 3254 − 3264  doi: 10.3390/ijms14023254

    96. [96]

      Li Sijia(李思佳), Zhang Wanxi(张万喜), Jiang Fang(蒋放), Lu Yuyuan(卢宇源), Shi Tongfei(石彤非), An Lijia (安立佳). Acta Polymerica Sinica(高分子学报), 2014, (9): 1174 − 1182

    97. [97]

      Massa M V, Carvalho J L, Dalnoki-Veress K. Phys Rev Lett, 2006, 97(24): 247802  doi: 10.1103/PhysRevLett.97.247802

    98. [98]

      Granasy L, Pusztai T, Borzsonyi T, Warren J A, Douglas J F. Nat Mater, 2004, 3(9): 645 − 650  doi: 10.1038/nmat1190

    99. [99]

      Wang H, Schultz J M, Yan S. Polymer, 2007, 48(12): 3530 − 3539  doi: 10.1016/j.polymer.2007.03.079

    100. [100]

      Jeon K, Krishnamoorti R. Macromolecules, 2008, 41(19): 7131 − 7140  doi: 10.1021/ma800652p

    101. [101]

      Qiao C D, Jiang S C, Ji X L, AN L J, Jiang B Z. Front Chem China, 2007, 2(4): 343 − 348

    102. [102]

      Xu J, Guo B H, Zhang Z M, Yan S K, Li L. Macromolecules, 2004, 37(11): 4118 − 4123  doi: 10.1021/ma0499122

    103. [103]

      Liu T, Petermann J, He C, Liu Z, Chung T S. Macromolecules, 2001, 34(13): 4305 − 4307  doi: 10.1021/ma010380o

    104. [104]

      Ma Y, Hu W, Reiter G. Macromolecules, 2006, 39(15): 5159 − 5164  doi: 10.1021/ma060798s

    105. [105]

      Sun X, Chen Z, Wang F, Yan S, Takahashi I. Macromolecules, 2013, 46(4): 1573 − 1581  doi: 10.1021/ma302349a

    106. [106]

      Yan C Z, Guo L, Sun X L, Yan S K, Takahashi I. Chinese J Polym Sci, 2013, 31(3): 407 − 418  doi: 10.1007/s10118-013-1240-9

    107. [107]

      Sun X, Guo L, Sato H, Ozaki Y, Yan S, Takahashi I. Polymer, 2011, 52(17): 3865 − 3870  doi: 10.1016/j.polymer.2011.06.024

    108. [108]

      Yang P, Han Y. Langmuir, 2009, 25(17): 9960 − 9968  doi: 10.1021/la901108p

    109. [109]

      Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y. Biomacromolecules, 2001, 2(3): 940 − 945

    110. [110]

      Savage R, Mullin N, Hobbs J. Macromolecules, 2015, 48(17): 6160 − 6165  doi: 10.1021/ma5025736

    111. [111]

      Kocun M, Labuda A, Meinhold W, Revenko I, Proksch R. ACS Nano, 2017, 11(10): 10097 − 10105  doi: 10.1021/acsnano.7b04530

    112. [112]

      Mullin N, Hobbs J K. Phys Rev Lett, 2011, 107(19): 197801  doi: 10.1103/PhysRevLett.107.197801

    113. [113]

      Ono Y, Kumaki J. Macromolecules, 2018, 51(19): 7629 − 7636  doi: 10.1021/acs.macromol.8b01428

    114. [114]

      Kumaki J, Kawauchi T, Yashima E. J Am Chem Soc, 2005, 127(16): 5788 − 5789  doi: 10.1021/ja050457e

    115. [115]

      Umetsu R, Kumaki J. Macromolecules, 2019, 52(17): 6555 − 6565  doi: 10.1021/acs.macromol.9b01280

    116. [116]

      Zhang B, Wang B, Chen J, Shen C, Reiter R, Chen J, Reiter G. Macromolecules, 2016, 49(14): 5145 − 5151  doi: 10.1021/acs.macromol.6b01123

    117. [117]

      Li L, Chan C M, Yeung K L, Li J X, Ng K M, Lei Y. Macromolecules, 2001, 34(2): 316 − 325  doi: 10.1021/ma000273e

    118. [118]

      Liu Y X, Chen E Q. Coordin Chem Rev, 2010, 254(9): 1011 − 1037

    119. [119]

      Okui N, Umemoto S, Kawano R, Mamun A. In: Reiter G, Strobl G, eds. Progress in Understanding of Polymer Crystallization. Berlin: Springer, 2007. 179 − 200

    120. [120]

      Voigt M, Dorsfeld S, Volz A, Sokolowski M. Phys Rev Lett, 2003, 91(2): 026103  doi: 10.1103/PhysRevLett.91.026103

    121. [121]

      Meakin P. Fractals, Scaling and Growth Far from Equilibrium. London: Cambridge University Press, 1998

    122. [122]

      Langer J. Rev Mod Phys, 1980, 52(1): 1 − 28  doi: 10.1103/RevModPhys.52.1

    123. [123]

      Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R. Polymer, 2001, 42(17): 7443 − 7447  doi: 10.1016/S0032-3861(01)00215-4

    124. [124]

      Schonherr H, Frank C W. Macromolecules, 2003, 36(4): 1199 − 1208  doi: 10.1021/ma020686a

    125. [125]

      Meyer E, Braun H G. In: Herlach D M, eds. Solidification and Crystallization. Weinheim: Wiley-VCH, 2004. 300 − 309

    126. [126]

      Jerold M S. Macromolecules, 2012, 45(16): 6299 − 6323

    127. [127]

      Li C Y, Cheng S Z D, Ge J J, Bai F, Zhang J Z H, Mann I, Harris F W, Chien L, Yan D, He T. Phys Rev Lett, 1999, 83(22): 4558 − 4561  doi: 10.1103/PhysRevLett.83.4558

    128. [128]

      Kajioka H, Taguchi K, Toda A. Macromolecules, 2011, 44(23): 9239 − 9246  doi: 10.1021/ma201985h

    129. [129]

      Zhang G, Zhai X, Ma Z, Jin L, Zheng P, Wang W, Cheng S Z D, Lotz B. ACS Macro Lett, 2012, 1(1): 217 − 221  doi: 10.1021/mz2001109

    130. [130]

      Zhang B, Chen J, Liu B, Wang B, Chen J, Shen C, Reiter R, Chen J, Reiter G. Macromolecules, 2017, 50(16): 6210 − 6217  doi: 10.1021/acs.macromol.7b01381

    131. [131]

      Xu J, Wang S, Wang G N, Zhu C, Luo S, Jin L, Gu X, Chen S, Feig V R, To J W F. Science, 2017, 355(6320): 59 − 64  doi: 10.1126/science.aah4496

    132. [132]

      Choi J, Gunkel I, Li Y, Sun Z, Liu F, Kim H, Carter K R, Russell T P. Nanoscale, 2017, 9(39): 14888 − 14896  doi: 10.1039/C7NR05394K

    133. [133]

      Wang L, Boutilier M S, Kidambi P R, Jang D, Hadjiconstantinou N G, Karnik R. Nat Nanotechnol, 2017, 12(6): 509 − 522  doi: 10.1038/nnano.2017.72

    134. [134]

      Forth J, Liu X, Hasnain J, Toor A, Miszta K, Shi S, Geissler P L, Emrick T, Helms B A, Russell T P. Adv Mater, 2018, 30(16): 1707603  doi: 10.1002/adma.201707603

    135. [135]

      Kim H, Kang B-G, Choi J, Sun Z, Yu D M, Mays J, Russell T P. Macromolecules, 2018, 51(3): 1181 − 1188  doi: 10.1021/acs.macromol.7b02601

    136. [136]

      Dante M, Peet J, Nguyen T Q. J Phys Chem C, 2008, 112(18): 7241 − 7249  doi: 10.1021/jp712086q

    137. [137]

      Kondo Y, Osaka M, Benten H, Ohkita H, Ito S. ACS Macro Lett, 2015, 4(9): 879 − 885  doi: 10.1021/acsmacrolett.5b00352

    138. [138]

      Osaka M, Benten H, Ohkita H, Ito S. Macromolecules, 2017, 50(4): 1618 − 1625  doi: 10.1021/acs.macromol.6b02604

    139. [139]

      Reid O G, Munechika K, Ginger D S. Nano Lett, 2008, 8(6): 1602 − 1609  doi: 10.1021/nl080155l

    140. [140]

      Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I, Ha C S. Nat Mater, 2006, 5(3): 197 − 203  doi: 10.1038/nmat1574

    141. [141]

      Xiao S, Zhang Q, You W. Adv Mater, 2017, 29(20): 1601391  doi: 10.1002/adma.201601391

    142. [142]

      Li G, Chang W H, Yang Y. Nat Rev Mater, 2017, 2(8): 17043  doi: 10.1038/natrevmats.2017.43

    143. [143]

      Liu Y, Cole M D, Jiang Y, Kim P Y, Nordlund D, Emrick T, Russell T P. Adv Mater, 2018, 30(15): 1705976  doi: 10.1002/adma.201705976

    144. [144]

      Homyak P D, Liu Y, Harris J D, Liu F, Carter K R, Russell T P, Coughlin E B. Macromolecules, 2016, 49(8): 3028 − 3037  doi: 10.1021/acs.macromol.6b00386

    145. [145]

      Zhang Rui(张睿), Liu Jiangang(刘剑刚), Han Yanchun(韩艳春). Polymer Bulletin(高分子通报), 2019, (2): 112 − 125

    146. [146]

      Ludwigs S, eds. P3HT Revisited: from Molecular Scale to Solar Cell Devices. Berlin Heidelberg: Springer-Verlag, 2014. 39 − 82

    147. [147]

      Kwon S, Yu K, Kweon K, Kim G, Kim J, Kim H, Jo Y R, Kim B J, Kim J, Lee S H, Lee K. Nat Commun, 2014, 5: 4183  doi: 10.1038/ncomms5183

    148. [148]

      Noriega R, Rivnay J, Vandewal K, Koch F P, Stingelin N, Smith P, Toney M F, Salleo A. Nat Mater, 2013, 12(11): 1038 − 1044  doi: 10.1038/nmat3722

    149. [149]

      Aiyar A R, Hong J I, Reichmanis E. Chem Mater, 2012, 24(15): 2845 − 2853  doi: 10.1021/cm202700k

    150. [150]

      Bolsée J C, Oosterbaan W D, Lutsen L, Vanderzande D, Manca J. Adv Funct Mater, 2013, 23(7): 862 − 869  doi: 10.1002/adfm.201102078

    151. [151]

      Musumeci C, Liscio A, Palermo V, Samorì P. Mater Today, 2014, 17(10): 504 − 517  doi: 10.1016/j.mattod.2014.05.010

    152. [152]

      Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1246 − 1260

    153. [153]

      Wang B, Chen J, Shen C, Reiter G, Zhang B. Macromolecules, 2019, 52(16): 6088 − 6096  doi: 10.1021/acs.macromol.9b01146

    154. [154]

      Choi D, Jin S, Lee Y, Kim S H, Chung D S, Hong K, Yang C, Jung J, Kim J K, Ree M. ACS Appl Mater Interfaces, 2010, 2(1): 48 − 53  doi: 10.1021/am9005385

    155. [155]

      Strobl G. Rev Mod Phys, 2009, 81(3): 1287  doi: 10.1103/RevModPhys.81.1287

    156. [156]

      Ludwigs S, eds. P3HT Revisited: from Molecular Scale to Solar Cell Devices. Berlin Heidelberg: Springer-Verlag, 2014. 83 − 106

    157. [157]

      Crossland E J W, Rahimi K, Reiter G, Steiner U, Ludwigs S. Adv Funct Mater, 2011, 21(3): 518 − 524  doi: 10.1002/adfm.201001682

    158. [158]

      Kim H S, Na J Y, Kim S, Park Y D. J Phys Chem C, 2015, 119(15): 8388 − 8393  doi: 10.1021/acs.jpcc.5b01199

    159. [159]

      Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch F P V, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G. Angew Chem Inter Ed, 2012, 51(44): 11131 − 11135  doi: 10.1002/anie.201205653

    160. [160]

      Guo Y, Han Y, Su Z. J Phys Chem B, 2013, 117(47): 14842 − 14848  doi: 10.1021/jp405837m

    161. [161]

      Xia Y, Rogers J A, Paul K E, Whitesides G M. Chem Rev, 1999, 99(7): 1823 − 1848  doi: 10.1021/cr980002q

    162. [162]

      Guo S, Lu Y, Wang B, Shen C, Chen J, Reiter G, Zhang B. Soft Matter, 2019, 15(14): 2981 − 2989  doi: 10.1039/C9SM00370C

    163. [163]

      Jacobs I E, Aasen E W, Nowak D, Li J, Morrison W, Roehling J D, Augustine M P, Moulé A J. Adv Mater, 2017, 29(2): 1603221  doi: 10.1002/adma.201603221

    164. [164]

      Xue L, Han Y. Prog Polym Sci, 2011, 36(2): 269 − 293  doi: 10.1016/j.progpolymsci.2010.07.004

    165. [165]

      Briseno A L, Mannsfeld S C, Ling M M, Liu S, Tseng R J, Reese C, Roberts M E, Yang Y, Wudl F, Bao Z. Nature, 2006, 444(7121): 913 − 917  doi: 10.1038/nature05427

    166. [166]

      Schmaltz T, Sforazzini G, Reichert T, Frauenrath H. Adv Mater, 2017, 29(18): 1605286  doi: 10.1002/adma.201605286

    167. [167]

      Wang D, Russell T P. Macromolecules, 2018, 51(1): 3 − 24  doi: 10.1021/acs.macromol.7b01459

    168. [168]

      Zhang Wenke(张文科). Acta Polymerica Sinica(高分子学报), 2011, (9): 913 − 922

    169. [169]

      Gartside J C, Arroo D M, Burn D M, Bemmer V L, Moskalenko A, Cohen L F, Branford W R. Nat Nanotechnol, 2018, 13(1): 53 − 58  doi: 10.1038/s41565-017-0002-1

    170. [170]

      Garcia R, Knoll A W, Riedo E. Nat Nanotechnol, 2014, 9(8): 577 − 587  doi: 10.1038/nnano.2014.157

    171. [171]

      Ryu Y K, Garcia R. Nanotechnology, 2017, 28(14): 142003  doi: 10.1088/1361-6528/aa5651

    172. [172]

      Farina M, Ye T, Lanzani G, Donato A D, Venanzoni G, Mencarelli D, Pietrangelo T, Morini A, Keivanidis P E. Nat Commun, 2013, 4(1): 2668  doi: 10.1038/ncomms3668

    173. [173]

      Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche M I, Rothuizen H E, Stutz R, Widmer R, Binnig G K. Ibm J Res Dev, 2000, 44(3): 323 − 340  doi: 10.1147/rd.443.0323

    174. [174]

      Li Y, Maynor B W, Liu J. J Am Chem Soc, 2001, 123(9): 2105 − 2106  doi: 10.1021/ja005654m

    175. [175]

      Felts J R, Onses M S, Rogers J A, King W P. Adv Mater, 2014, 26(19): 2999 − 3002  doi: 10.1002/adma.201305481

    176. [176]

      Herruzo E T, Perrino A P, Garcia R. Nat Commun, 2014, 5: 3126  doi: 10.1038/ncomms4126

    177. [177]

      Zimmermann S T, Balkenende D W R, Lavrenova A, Weder C, Brugger J. Acs Appl Mater Interfaces, 2017, 9(47): 41454 − 41461  doi: 10.1021/acsami.7b13672

    178. [178]

      Cho Y K R, Rawlings C, Wolf H, Spieser M, Bisig S, Reidt S, Sousa M, Khanal S, Jacobs T D B, Knoll A W. ACS Nano, 2017, 11(12): 11890 − 11897  doi: 10.1021/acsnano.7b06307

    179. [179]

      Altebaeumer T, Gotsmann B, Pozidis H, Knoll A, Duerig U. Nano Lett, 2008, 8(12): 4398 − 4403  doi: 10.1021/nl8022737

    180. [180]

      Rice R H, Mokariantabari P, King W P, Szoszkiewicz R. Langmuir, 2012, 28(37): 13503 − 13511  doi: 10.1021/la302565s

    181. [181]

      Binnig G, Despont M, Drechsler U, Haeberle W, Lutwyche M, Vettiger P, Mamin H J, Chui B W, Kenny T W. Appl Phys Lett, 1999, 74(9): 1329 − 1331  doi: 10.1063/1.123540

    182. [182]

      Jo A, Joo W, Jin W H, Nam H, Kim J K. Nat Nanotech, 2009, 4(11): 727 − 731  doi: 10.1038/nnano.2009.260

    183. [183]

      Gotsmann B, Duerig U T, Frommer J, Hawker C J. Adv Funct Mater, 2006, 16(11): 1499 − 1505  doi: 10.1002/adfm.200500724

    184. [184]

      Knoll A W, Pires D, Coulembier O, Dubois P, Hedrick J L, Frommer J, Duerig U T. Adv Mater, 2010, 22(31): 3361 − 3365  doi: 10.1002/adma.200904386

    185. [185]

      Pires D, Hedrick J L, de Silva A, Frommer J, Gotsmann B, Wolf H, Despont M, Duerig U T, Knoll A W. Science, 2010, 328(5979): 732 − 735  doi: 10.1126/science.1187851

    186. [186]

      Duvigneau J, Schonherr H, Vancso G J. Langmuir, 2008, 24(19): 10825 − 10832  doi: 10.1021/la801337f

    187. [187]

      Lyuksyutov S F, Vaia R A, Paramonov P B, Juhl S, Waterhouse L, Ralich R M, Sigalov G, Sancaktar E. Nat Mater, 2003, 2(7): 468 − 472  doi: 10.1038/nmat926

    188. [188]

      Benetti E M, Chung H J, Vancso G J. Macromol Rapid Commun, 2009, 30(6): 411 − 417  doi: 10.1002/marc.200800628

    189. [189]

      Dago A I, Sangiao S, Fernandezpacheco R, De Teresa J M, Garcia R. Carbon, 2018, 129: 281 − 285  doi: 10.1016/j.carbon.2017.12.033

    190. [190]

      Garcia R, Martinez R V, Martinez J. Chem Soc Rev, 2006, 35(1): 29 − 38  doi: 10.1039/B501599P

    191. [191]

      Wang B, Zhang B, Shen C, Chen J, Reiter G. Macromolecules, 2018, 51(19): 7692 − 7698  doi: 10.1021/acs.macromol.8b01465

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    3. [3]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    6. [6]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    7. [7]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    8. [8]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    9. [9]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    10. [10]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    11. [11]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    14. [14]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    20. [20]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

Metrics
  • PDF Downloads(0)
  • Abstract views(348)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return