Citation: Jie Hao, Yu-xia Gao, Hou-rui Chen, Jun Hu, Yong Ju. Sustainable Polymers Based on Natural Terpenes[J]. Acta Polymerica Sinica, ;2020, 51(3): 239-266. doi: 10.11777/j.issn1000-3304.2019.19180 shu

Sustainable Polymers Based on Natural Terpenes

  • Sustainable polymers are a class of materials derived from renewable resources and exhibit closed-loop life cycles. The development of sustainable polymers has been an important research topic to meet the need of nonpetroleum-based materials and to reduce the dependence on fossil fuel over the past decades. Terpenes is a kind of natural products with extensive supply sources and has multiple reactive sites and chiral centers. They can be divided into cyclic monoterpenes, linear monoterpenes and polycyclic terpenes according to the number of isoprene units and skeleton ring in their molecular structures. Such structural characteristic can not only simplify the synthesis of sustainable polymers, but also be used to design sustainable polymers with accurate structure at the molecular level according to a variety of demands. Moreover, natural terpenes can endow sustainable polymers with unique stereochemical structures, good biological activity and biocompatibility, thus broadening their applications in surface coating, biological medicine, and tissue engineering. From the perspective of structural design, there are three main ways to construct natural terpene-based sustainable polymers: (1) main-chain sustainable polymers can be obtained by self-condensation polymerization or co-condensation of terpenes or their derivatives; (2) side-chain sustainable polymers can be obtained by homopolymerization or copolymerization of terpenes with unsaturated functional groups or terpene monomers modified by unsaturated moieties; (3) sustainable polymers end-capped with terpenes can be obtained by modifying the polymer chain end with terpenes or their derivatives. It should be noted that the structure discrepancy between natural terpenes may require different design strategies to create functional sustainable polymers. This paper reviews the progress of natural terpene-based sustainable polymers in recent decades in the order of cyclic monoterpenes, linear monoterpenes and polycyclic terpenes. The main resources, monomer design strategies and polymerization methods of natural terpenes, as well as the characteristics, advantages and potential applications of natural terpene-based sustainable polymers are discussed.
  • 加载中
    1. [1]

      Zhang X, Fevre M, Jones G O, Waymouth R M. Chem Rev, 2018, 118: 839 − 885  doi: 10.1021/acs.chemrev.7b00329

    2. [2]

      Kristufek S L, Wacker K T, Tsao Y Y T, Su L, Wooley K L. Nat Prod Rep, 2017, 34: 433 − 459  doi: 10.1039/C6NP00112B

    3. [3]

      Zhu Y, Romain C, Williams C K. Nature, 2016, 540: 354 − 362  doi: 10.1038/nature21001

    4. [4]

      Gandini A, Lacerda T M, Carvalho A J F, Trovatti E. Chem Rev, 2016, 116: 1637 − 1669  doi: 10.1021/acs.chemrev.5b00264

    5. [5]

      Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem Rev, 2010, 110: 3552 − 3599  doi: 10.1021/cr900354u

    6. [6]

      Schneiderman D K, Hillmyer M A. Macromolecules, 2017, 50: 3733 − 3749  doi: 10.1021/acs.macromol.7b00293

    7. [7]

      Gandini A, Lacerda T M. Prog Polym Sci, 2015, 48: 1 − 39  doi: 10.1016/j.progpolymsci.2014.11.002

    8. [8]

      Yao K, Tang C. Macromolecules, 2013, 46: 1689 − 1712  doi: 10.1021/ma3019574

    9. [9]

      Miao S, Wang P, Su Z, Zhang S. Acta Biomater, 2014, 10: 1692 − 1704  doi: 10.1016/j.actbio.2013.08.040

    10. [10]

      Satoh K. Polym J, 2015, 47: 527 − 536  doi: 10.1038/pj.2015.31

    11. [11]

      Llevot A, Dannecker P K, Czapiewski M V, Over L C, Söyler Z, Meier M A R. Chem Eur J, 2016, 22: 11510 − 11521  doi: 10.1002/chem.201602068

    12. [12]

      Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A N, Mangalam A, Simonsen J, Benight A S, Bismarck A, Berglund L A, Peijs T. J Mater Sci, 2010, 45: 1 − 33  doi: 10.1007/s10853-009-3874-0

    13. [13]

      Wilbon P A, Chu F, Tang C. Macromol Rapid Commun, 2013, 34: 8 − 37  doi: 10.1002/marc.201200513

    14. [14]

      Winnacker M, Rieger B. ChemSusChem, 2015, 8: 2455 − 2471  doi: 10.1002/cssc.201500421

    15. [15]

      Winnacker M. Angew Chem Int Ed, 2018, 57: 14362 − 14371  doi: 10.1002/anie.201804009

    16. [16]

      Zhao J, Schlaad H. Adv Polym Sci, 2013, 253: 151 − 190

    17. [17]

      Keszler B, Kennedy J P. Adv Polym Sci, 1992, 100: 1 − 9

    18. [18]

      Lu J, Kamigaito M, Sawamoto M, Higashimura T, Deng Y X. Macromolecules, 1997, 30: 22 − 26  doi: 10.1021/ma960118t

    19. [19]

      Lu J, Kamigaito M, Sawamoto M, Higashimura T, Deng Y X. Macromolecules, 1997, 30: 27 − 31  doi: 10.1021/ma9610976

    20. [20]

      Kukhta N A, Vasilenko I V, Kostjuk S V. Green Chem, 2011, 13: 2362 − 2364  doi: 10.1039/c1gc15593h

    21. [21]

      Winnacker M, Sag J, Tischner A, Rieger B. Macromol Rapid Commun, 2017, 38: 1600787 − 16000793  doi: 10.1002/marc.201600787

    22. [22]

      Winnacker M, Sag J. Chem Commun, 2018, 54: 841 − 844  doi: 10.1039/C7CC08266E

    23. [23]

      Quilter H C, Hutchby M, Davidson M G, Jones M D. Polym Chem, 2017, 8: 833 − 837  doi: 10.1039/C6PY02033J

    24. [24]

      Liu S, Zhou L, Yu S, Xie C, Liu F, Song Z. Biomass Bioenergy, 2013, 57: 238 − 242  doi: 10.1016/j.biombioe.2013.06.005

    25. [25]

      Park H J, Ryu C Y, Crivello J V. J Polym Sci, Part A: Polym Chem, 2013, 51: 109 − 117  doi: 10.1002/pola.26280

    26. [26]

      Miyaji H, Satoh K, Kamigaito M. Angew Chem Int Ed, 2016, 55: 1372 − 1376  doi: 10.1002/anie.201509379

    27. [27]

      Sainz M F, Souto J A, Regentova D, Johansson M K G, Timhagen S T, Irvine D J, Buijsen P, Koning C E, Stockman R A, Howdle S M. Polym Chem, 2016, 7: 2882 − 2887  doi: 10.1039/C6PY00357E

    28. [28]

      Strick B F, Delferro M, Geiger F M, Thomson R J. ACS Sustain Chem Eng, 2015, 3: 1278 − 1281  doi: 10.1021/acssuschemeng.5b00255

    29. [29]

      Chandrakala R, Prarabdh C B, Promita G, Ashutosh U. Food Chem Toxicol, 2018, 120: 668 − 680  doi: 10.1016/j.fct.2018.07.052

    30. [30]

      Firdaus M, Espinosa L M D, Meier M A R. Macromolecules, 2011, 44: 7253 − 7262  doi: 10.1021/ma201544e

    31. [31]

      Byrne C, Allen S, Lobkovsky E, Coates G. J Am Chem Soc, 2004, 126: 11404 − 11405  doi: 10.1021/ja0472580

    32. [32]

      Martín C, Kleij A W. Macromolecules, 2016, 49: 6285 − 6295  doi: 10.1021/acs.macromol.6b01449

    33. [33]

      Kindermann N, Cristofol À, Kleij A W. ACS Catal, 2017, 7: 3860 − 3863  doi: 10.1021/acscatal.7b00770

    34. [34]

      Chen W, Vermaak I, Viljoen A. Molecules, 2013, 18: 5434 − 5454  doi: 10.3390/molecules18055434

    35. [35]

      Zhang H, Li J, Tian Z, Liu F. J Appl Polym Sci, 2013, 129: 3333 − 3340  doi: 10.1002/app.39053

    36. [36]

      Choi G-H, Hwang D Y, Suh D H. Macromolecules, 2015, 48: 6839 − 6845  doi: 10.1021/acs.macromol.5b01112

    37. [37]

      Nsengiyumva O, Miller S A. Green Chem, 2019, 21: 973 − 978  doi: 10.1039/C8GC03990A

    38. [38]

      Robert C, Montigny F D, Thomas C M. Nat Commun, 2011, 2: 586 − 592  doi: 10.1038/ncomms1596

    39. [39]

      Granger R E, Campbell E L, Johnston G A R. Biochem Pharmacol, 2005, 69: 1101 − 1111  doi: 10.1016/j.bcp.2005.01.002

    40. [40]

      Roth S, Funk I, Hofer M, Sieber V. ChemSusChem, 2017, 10: 3574 − 3580  doi: 10.1002/cssc.201701146

    41. [41]

      Luo L, Li G, Luan D, Yuan Q, Wei Y, Wang X. ACS Appl Mater Interfaces, 2014, 6: 19371 − 19377  doi: 10.1021/am505481q

    42. [42]

      Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M. Biomaterials, 2004, 25: 2029 − 2037  doi: 10.1016/j.biomaterials.2003.08.061

    43. [43]

      Hook, A L, Chang, C Y, Yang, J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine D J, Langer R, Anderson D G, Williams P, Davies M C, Alexander M R. Nat Biotechnol, 2012, 30: 868 − 875  doi: 10.1038/nbt.2316

    44. [44]

      Carvalho C C, Fonseca M M. Food Chem, 2006, 95: 413 − 422  doi: 10.1016/j.foodchem.2005.01.003

    45. [45]

      Lowe J R, Martello M T, Tolman W B, Hillmyer M A. Polym Chem, 2011, 2: 702 − 708  doi: 10.1039/C0PY00283F

    46. [46]

      Lowe J R, Tolman W B, Hillmyer M A. Biomacromolecules, 2009, 10: 2003 − 2008  doi: 10.1021/bm900471a

    47. [47]

      Yang J, Lee S, Choi W J, Seo H, Kim K, Kim G J, Kim Y W, Shin J. Biomacromolecules, 2015, 16: 246 − 256  doi: 10.1021/bm501450c

    48. [48]

      Ding K, John A, Shin J, Lee Y, Quinn T, Tolman W B, Hillmyer M A. Biomacromolecules, 2015, 16: 2537 − 2539  doi: 10.1021/acs.biomac.5b00754

    49. [49]

      Winnacker M, Neumeier M, Zhang X, Papadakis C M, Rieger B. Macromol Rapid Commun, 2016, 37: 851 − 857  doi: 10.1002/marc.201600056

    50. [50]

      Winnacker M, Vagin S, Auer V, Rieger B. Macromol Chem Phys, 2014, 215: 1654 − 1660  doi: 10.1002/macp.201400324

    51. [51]

      Winnacker M, Tischner A, Neumeier M, Rieger B. RSC Adv, 2015, 5: 77699 − 77705  doi: 10.1039/C5RA15656D

    52. [52]

      Shin J, Lee Y, Tolman W B, Hillmyer M A. Biomacromolecules, 2012, 13: 3833 − 3840  doi: 10.1021/bm3012852

    53. [53]

      Zee N J V, Coates G W. Angew Chem Int Ed, 2015, 54: 2665 − 2668  doi: 10.1002/anie.201410641

    54. [54]

      Zee N J V, Sanford M J, Coates G W. J Am Chem Soc, 2016, 138: 2755 − 2761  doi: 10.1021/jacs.5b12888

    55. [55]

      Sanford M J, Carrodeguas L P, Zee N J V, Kleij A W, Coates G W. Macromolecules, 2016, 49: 6394 − 6400  doi: 10.1021/acs.macromol.6b01425

    56. [56]

      Behr A, Johnen L. ChemSusChem, 2009, 2: 1072 − 1095  doi: 10.1002/cssc.200900186

    57. [57]

      Marval C S, Hwa C C L. J Polym Sci, 1960, XLV: 25 − 34

    58. [58]

      Cawse J L, Sanford J L, Still R H. J Appl Polym Sci, 1986, 31: 1963 − 1975  doi: 10.1002/app.1986.070310702

    59. [59]

      Cawse J L, Sanford J L, Still R H. Polymer, 1987, 28: 368 − 374  doi: 10.1016/0032-3861(87)90187-X

    60. [60]

      Sarkar P, Bhowmick A K. RSC Adv, 2014, 4: 61343 − 61354  doi: 10.1039/C4RA09475A

    61. [61]

      Sarkar P, Bhowmick A K. ACS Sustain Chem Eng, 2016, 4: 5462 − 5474  doi: 10.1021/acssuschemeng.6b01038

    62. [62]

      Sarkar P, Bhowmick A K. J Polym Sci, Part A: Polym Chem, 2017, 55: 2639 − 2649  doi: 10.1002/pola.28661

    63. [63]

      Sarkar P, Bhowmick A K. ACS Sustain Chem Eng, 2016, 4: 2129 − 2141  doi: 10.1021/acssuschemeng.5b01591

    64. [64]

      Newmark R A, Majumdar R N. J Polym Sci, Part A: Polym Chem, 1988, 26: 71 − 77  doi: 10.1002/pola.1988.080260107

    65. [65]

      Zhou C, Wei Z, Lei X, Li Y. RSC Adv, 2016, 6: 63508 − 63514  doi: 10.1039/C6RA08689F

    66. [66]

      Zhou C, Wei Z, Wang W, Yu Y, Leng X, Li Y. Eur Polym J, 2018, 99: 477 − 484  doi: 10.1016/j.eurpolymj.2018.01.004

    67. [67]

      Matic A, Schlaad H. Polym Int, 2018, 67: 500 − 505  doi: 10.1002/pi.5534

    68. [68]

      Bolton J M, Hillmyer M A, Hoye T R. ACS Macro Lett, 2014, 3: 717 − 720  doi: 10.1021/mz500339h

    69. [69]

      Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B. Prog Polym Sci, 2013, 38: 63 − 235  doi: 10.1016/j.progpolymsci.2012.06.002

    70. [70]

      Raynaud J, Wu J Y, Ritter T. Angew Chem Int Ed, 2012, 51: 11805 − 11808  doi: 10.1002/anie.201205152

    71. [71]

      Jia X, Li W, Zhao J, Yi F, Luo Y, Gong D. Organometallics, 2019, 38: 278 − 288  doi: 10.1021/acs.organomet.8b00708

    72. [72]

      Li W, Zhao J, Zhang X, Gong D. Ind Eng Chem Res, 2019, 58: 2792 − 2800  doi: 10.1021/acs.iecr.8b05866

    73. [73]

      Zhao J, Chen H, Li W, Jia X, Zhang X, Gong D. Inorg Chem, 2018, 57: 4088 − 4097  doi: 10.1021/acs.inorgchem.8b00270

    74. [74]

      Valente A, Mortreux A, Visseaux M, Zinck P. Chem Rev, 2013, 113: 3836 − 3857  doi: 10.1021/cr300289z

    75. [75]

      Belaid I, Macqueron B, Poradowski M N, Bouaouli S, Thuilliez J, Cruz-Boisson F D, Monteil V, D’Agosto F, Perrin L, Boisson C. ACS Catal, 2019, 9: 9298 − 9309

    76. [76]

      Göttker-Schnetmann I, Kenyon P, Mecking S. Angew Chem Int Ed, 2019, 58: 2 − 7  doi: 10.1002/anie.201813331

    77. [77]

      León Gómez R E D, Enríquez-Medrano F J, Textle H M, Carrizales R M, Acosta K R, González H R L, Romero J L O, Uribe L E L. Can J Chem Eng, 2016, 94: 823 − 832  doi: 10.1002/cjce.22458

    78. [78]

      Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M. J Polym Sci, Part A: Polym Chem, 2012, 50: 2898 − 2905  doi: 10.1002/pola.26069

    79. [79]

      Georges S, Touré A O, Visseaux M, Zinck P. Macromolecules, 2014, 47: 4538 − 4547  doi: 10.1021/ma5008896

    80. [80]

      Kularatne R N, Yang A, Nguyen H Q, McCandless G T, Stefan M C. Macromol Rapid Commun, 2017, 1700427 − 1700431

    81. [81]

      Naddeo M, Buonerba A, Luciano E, Grassi A, Proto A, Capacchione C. Polymer, 2017, 131: 151 − 159  doi: 10.1016/j.polymer.2017.10.028

    82. [82]

      Moad G. Polym Int, 2017, 66: 26 − 41  doi: 10.1002/pi.5173

    83. [83]

      Hilschmann J, Kali G. Eur Polym J, 2015, 73: 363 − 373  doi: 10.1016/j.eurpolymj.2015.10.021

    84. [84]

      Bauer N, Brunke J, Kali G. ACS Sustainable Chem Eng, 2017, 5: 10084 − 10092  doi: 10.1021/acssuschemeng.7b02091

    85. [85]

      Métafiot A, Kanawati Y, Gérard J F, Defoort B, Maric M. Macromolecules, 2017, 50: 3101 − 3120  doi: 10.1021/acs.macromol.6b02675

    86. [86]

      Kobayashi S, Lu C, Hoye T R, Hillmyer M A. J Am Chem Soc, 2009, 131: 7960 − 7961  doi: 10.1021/ja9027567

    87. [87]

      Liu B, Li S, Wang M, Cui D. Angew Chem Int Ed, 2017, 56: 4560 − 4564  doi: 10.1002/anie.201700546

    88. [88]

      Yamamoto D, Matsumoto A. Macromolecules, 2013, 46: 9526 − 9536  doi: 10.1021/ma4020092

    89. [89]

      Matsumoto A, Yamamoto D. J Polym Sci, Part A: Polym Chem, 2016, 54: 3616 − 3625  doi: 10.1002/pola.28248

    90. [90]

      Goldblatt L A, Palkin S. J Am Chem Soc, 1941, 63: 3517 − 3522  doi: 10.1021/ja01857a075

    91. [91]

      Veazey R L. US Patent, US4694059A. 1987-09-15

    92. [92]

      Marvel C S, Kiener P E, Vessel E D. J Am Chem Soc, 1959, 81: 4694 − 4697  doi: 10.1021/ja01526a062

    93. [93]

      Marvel C S, Kiener P E. J Polym Sci, 1962, 61: 311 − 331  doi: 10.1002/pol.1962.1206117205

    94. [94]

      Puskas J E, Gergely A L, Kaszas G. J Polym Sci, Part A: Polym Chem, 2013, 51: 29 − 33  doi: 10.1002/pola.26306

    95. [95]

      Gergely A L, Puskas J E. J Polym Sci, Part A: Polym Chem, 2015, 53: 1567 − 1574

    96. [96]

      Gergely A L, Turkarslan O, Puskas J E, Kaszas G. J Polym Sci, Part A: Polym Chem, 2013, 51: 4717 − 4721  doi: 10.1002/pola.26915

    97. [97]

      Roh J H, Roy D, Lee W K, Gergely A L, Puskas J E, Roland C M. Polymer, 2015, 56: 280 − 283  doi: 10.1016/j.polymer.2014.11.015

    98. [98]

      Sahu P, Sarkar P, Bhowmick A K. ACS Sustainable Chem Eng, 2017, 5: 7659 − 7669  doi: 10.1021/acssuschemeng.7b00990

    99. [99]

      Srivastava A K, Pandey P. Eur Polym J, 2002, 38: 1709 − 1712  doi: 10.1016/S0014-3057(02)00028-9

    100. [100]

      Sharma S, Srivastava A K. J Appl Polym Sci, 2008, 108: 892 − 899  doi: 10.1002/app.26838

    101. [101]

      Misra G, Srivastava A K. Colloid Polym Sci, 2008, 286: 445 − 451  doi: 10.1007/s00396-007-1794-6

    102. [102]

      Shukla A, Srivastava A K. Polym Adv Technol, 2004, 15: 445 − 452  doi: 10.1002/pat.373

    103. [103]

      Shukla A, Srivastava A K. J Appl Polym Sci, 2004, 92: 1134 − 1143  doi: 10.1002/app.13658

    104. [104]

      Shukla A, Srivastava A K. J Macromol Sci, Part A: Pure Appl Chem, 2003, 40: 61 − 80  doi: 10.1081/MA-120016674

    105. [105]

      Shukla A, Srivastava A K. High Perform Polym, 2003, 15: 243 − 257  doi: 10.1177/0954008303015003002

    106. [106]

      Shukla A, Srivastava A K. Polym Plast Technol Eng, 2002, 41: 777 − 793  doi: 10.1081/PPT-120006448

    107. [107]

      Srivastava A K, Pandey P. Polym Int, 2001, 50: 937 − 945  doi: 10.1002/pi.717

    108. [108]

      Pandey P, Srivastava A K. J Polym Sci, Part A: Polym Chem, 2002, 40: 1243 − 1252  doi: 10.1002/pola.10173

    109. [109]

      Pathak S, Srivastava A K. J Appl Polym Sci, 2009, 112: 2601 − 2608  doi: 10.1002/app.29614

    110. [110]

      Pandey P, Srivastava A K. Des Monomers Polym, 2003, 6: 197 − 209  doi: 10.1163/156855503768338250

    111. [111]

      Srivastava A K, Pandey P, Mishra G. J Appl Polym Sci, 2006, 102: 4908 − 4914  doi: 10.1002/app.24883

    112. [112]

      Pandey P, Srivastava A K. Adv Polym Tech, 2002, 21: 59 − 64  doi: 10.1002/adv.10009

    113. [113]

      Busch H, Stempfle F, Heß S, Grau E, Mecking S. Green Chem, 2014, 16: 4541 − 4545  doi: 10.1039/C4GC01233J

    114. [114]

      Liu X, Xin W, Zhang J. Green Chem, 2009, 11: 1018 − 1025  doi: 10.1039/b903955d

    115. [115]

      Liu X, Xin W, Zhang J. Bioresour Technol, 2010, 101: 2520 − 2524  doi: 10.1016/j.biortech.2009.11.028

    116. [116]

      Wang H, Liu B, Liu X, Zhang J, Xian M. Green Chem, 2008, 10: 1190 − 1196  doi: 10.1039/b803295e

    117. [117]

      Wang H, Liu B, Liu X, Zhang J, Xian M. Polym Int, 2009, 58: 1435 − 1441  doi: 10.1002/pi.2680

    118. [118]

      Bicu I, Mustata F. Angew Makromol Chem, 1993, 213: 169 − 179  doi: 10.1002/apmc.1993.052130115

    119. [119]

      Bicu I, Mustata F. Angew Makromol Chem, 1999, 264: 21 − 29  doi: 10.1002/(SICI)1522-9505(19990201)264:1<21::AID-APMC21>3.0.CO;2-4

    120. [120]

      Bicu I, Mustata F. J Appl Polym Sci, 2004, 92: 2240 − 2252  doi: 10.1002/app.20116

    121. [121]

      Bicu I, Mustata F. J Polym Sci, Part A: Polym Chem, 2005, 43: 6308 − 6322  doi: 10.1002/pola.21070

    122. [122]

      Bicu I, Mustata F. Eur Polym J, 2010, 46: 1316 − 1327  doi: 10.1016/j.eurpolymj.2010.03.011

    123. [123]

      Bicu I, Mustata F. J Polym Sci, Part A: Polym Chem, 2007, 45: 5979 − 5990  doi: 10.1002/pola.22352

    124. [124]

      Bicu I, Mustata F. Macromol Mater Eng, 2000, 280/281: 47 − 53  doi: 10.1002/1439-2054(20000801)280:1<47::AID-MAME47>3.0.CO;2-#

    125. [125]

      Atta A, El-Saeed S, Farag R. React Funct Polym, 2006, 66: 1596 − 1608  doi: 10.1016/j.reactfunctpolym.2006.06.002

    126. [126]

      Zheng Y, Yao K, Lee J, Chandler D, Wang J, Wang C, Chu F, Tang C. Macromolecules, 2010, 43: 5922 − 5924  doi: 10.1021/ma101071p

    127. [127]

      Chen Y, Wilbon P A, Chen Y P, Zhou J, Nagarkatti M, Wang C, Chu F, Decho A W, Tang C. RSC Adv, 2012, 2: 10275 − 10282  doi: 10.1039/c2ra21675b

    128. [128]

      Wang J, Chen Y P, Yao K, Wilbon P A, Zhang W, Ren L, Zhou J, Nagarkatti M, Wang C, Chu F, He X, Decho A W, Tang C. Chem Commun, 2012, 48: 916 − 918  doi: 10.1039/C1CC16432E

    129. [129]

      Yao K, Wang J, Zhang W, Lee J S, Wang C, Chu F, He X, Tang C. Biomacromolecules, 2011, 12: 2171 − 2177  doi: 10.1021/bm200460u

    130. [130]

      Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tammela P. J Nat Prod, 2009, 72: 1917 − 1926  doi: 10.1021/np9003245

    131. [131]

      Sami A, Taru M, Salme K, Jari Y K. Eur J Pharm Sci, 2006, 29: 1 − 13  doi: 10.1016/j.ejps.2006.04.006

    132. [132]

      Jeromenok J, Böhlmann W, Antonietti M, Weber J. Macromol Rapid Commun, 2011, 32: 1846 − 1851  doi: 10.1002/marc.201100532

    133. [133]

      Chen Y, Song Q, Zhao J, Gong X, Schlaad H, Zhang G. ACS Appl Mater Interfaces, 2018, 10: 6593 − 6600  doi: 10.1021/acsami.7b16255

    134. [134]

      Gorbunova M N, Krainova G F, Tolmacheva I A, Grishko V V. Russ J Appl Chem, 2012, 85: 1137 − 1141  doi: 10.1134/S1070427212070269

    135. [135]

      Ma Z, Jia Y G, Zhu X X. Biomacromolecules, 2017, 18: 3812 − 3818  doi: 10.1021/acs.biomac.7b01106

    136. [136]

      Kao T C, Wu C H, Yen G C. J Agric Food Chem, 2014, 62: 542 − 553  doi: 10.1021/jf404939f

    137. [137]

      Salvador J A R, Leal A S, Valdeira A S, Gonçalves B M F, Alho D P S, S Figueiredo S A C, Silvestre S M, Mendes V I S. Eur J Med Chem, 2017, 142: 95 − 130  doi: 10.1016/j.ejmech.2017.07.013

    138. [138]

      Li Y, Li J, Zhao X, Yan Q, Gao Y, Hao J, Hu J, Ju Y. Chem Eur J, 2016, 22: 18435 − 18441  doi: 10.1002/chem.201603753

    139. [139]

      Hao J, Gao Y, Li Y, Yan Q, Hu J, Ju Y. Chem Asian J, 2017, 12: 2231 − 2236  doi: 10.1002/asia.201700581

    140. [140]

      Li Y, Gao Y, Wang B, Hao J, Hu J, Ju Y. Chem Asian J, 2018, 13: 2723 − 2729  doi: 10.1002/asia.201800761

    141. [141]

      Hao J, Gao Y, Zheng C, Liu J, Hu J, Ju Y. ACS Macro Lett, 2018, 7: 1131 − 1137  doi: 10.1021/acsmacrolett.8b00560

    142. [142]

      Ma Y, Hao J, Zhao K, Ju Y, Hu J, Gao Y, Du F. J Colloid Interface Sci, 2019, 541: 93 − 100  doi: 10.1016/j.jcis.2019.01.088

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    10. [10]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    11. [11]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    14. [14]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Bing Yuan Fengli Yu Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032

    19. [19]

      Qian Shao Jiajing Tan Yongmei Chen Jiyue Jing Zhuo Wang . Exploration and Practice on the Management of Extracurricular Innovation Laboratories in Chemistry. University Chemistry, 2024, 39(4): 19-25. doi: 10.3866/PKU.DXHX202310119

    20. [20]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

Metrics
  • PDF Downloads(0)
  • Abstract views(206)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return