Citation: Rong-chun Zhang. The Microstructures and Molecular Interactions in Multiphase Polymers: Insights from Solid-State NMR Spectroscopy[J]. Acta Polymerica Sinica, ;2020, 51(2): 136-147. doi: 10.11777/j.issn1000-3304.2019.19175 shu

The Microstructures and Molecular Interactions in Multiphase Polymers: Insights from Solid-State NMR Spectroscopy

  • Corresponding author: Rong-chun Zhang, zhangcr@scut.edu.cn
  • Received Date: 29 September 2019
    Revised Date: 28 October 2019

  • In recent decades, solid-state nuclear magnetic resonance (NMR) spectroscopy has been playing an important role in the characterization of polymer materials. To some degree, it has become one of the indispensable tools for studying the microstructures, segmental dynamics and inter-/intra-molecular interactions and elucidating the structure-functionality-property relationship of multiphase polymer materials, because the anisotropic spin interactions in the molecules can be selectively manipulated via various radiofrequency pulse sequence design. As a result, NMR can provide important information on a length scale from 0.1 nm to 100 nm and a time scale from 1 ns to 100 s. Herein, in this current review article, we will review some of our recently developed solid-state NMR approaches specifically for applications in polymers, including quantitative determination of compositional contents, characterization of crosslinking/entanglement density and inhomogeneity of the network, hydrogen bonding interactions between segments, and so on. A variety of typical examples, including self-healing supramolecular rubbers, thermal reversible polyurethanes, dual-cross-linked hydrogels, elastomers, etc., are given in detail, showing how various solid-state NMR approaches were implemented to quantitatively characterizing the structures, molecular interactions, and crosslinking network. Furthermore, due to the presence of heterogeneous dynamic in multiphase polymers, the applications of traditional solid-state NMR techniques are sustainably limited, and we also developed corresponding novel solid-state NMR approaches to overcome the limitations and enhance the spectral resolution and signal sensitivity.
  • 加载中
    1. [1]

      Rubinstein M, Colby R H. Polymer Physics. New York: Oxford University Press, 2003

    2. [2]

    3. [3]

      Hansen M R, Graf R, Spiess H W. Chem Rev, 2016, 116(3): 1272 − 1308  doi: 10.1021/acs.chemrev.5b00258

    4. [4]

      Zhang R, Miyoshi T, Sun P. ed. NMR Methods for Characterization of Synthetic and Natural Polymers. London: Royal Society of Chemistry, 2019

    5. [5]

      Spiess H W. Macromolecules, 2017, 50(5): 1761 − 1777  doi: 10.1021/acs.macromol.6b02736

    6. [6]

      Zhang Rongchun(张荣纯), Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志), 2012, 29(3): 307 − 338  doi: 10.3969/j.issn.1000-4556.2012.03.001

    7. [7]

      Schmidt-Rohr K, Spiess H W. Multidimensional Solid-state NMR and Polymers. London: Academic Press, 1994

    8. [8]

    9. [9]

      Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. New York: Oxford University Press, 1987

    10. [10]

      Mehring M. Principles of High Resolution NMR in Solids. Springer Science & Business Media, 2012

    11. [11]

    12. [12]

      Mark J, Ngai K, Graessley W, Mandelkern L, Samulski E, Wignall G, Koenig J. Physical Properties of Polymers. Cambridge: Cambridge University Press, 2004

    13. [13]

      Pavlidou S, Papaspyrides C D. Prog Polym Sci, 2008, 33(12): 1119 − 1198  doi: 10.1016/j.progpolymsci.2008.07.008

    14. [14]

      Yang Y, Ding X, Urban M W. Prog Polym Sci, 2015, 49-50: 34 − 59  doi: 10.1016/j.progpolymsci.2015.06.001

    15. [15]

      Hager M D, Bode S, Weber C, Schubert U S. Prog Polym Sci, 2015, 49-50: 3 − 33  doi: 10.1016/j.progpolymsci.2015.04.002

    16. [16]

      Yilgör I, Yilgör E, Wilkes G L. Polymer, 2015, 58: A1 − A36  doi: 10.1016/j.polymer.2014.12.014

    17. [17]

      Deanin R D. High Performance Biomaterials: A Complete Guide to Medical and Pharmaceutical Applications, 1st ed. New York: Routledge Press, 2017

    18. [18]

      Hernandez R, Weksler J, Padsalgikar A, Choi T, Angelo E, Lin J, Xu L-C, Siedlecki C A, Runt J. Macromolecules, 2008, 41(24): 9767 − 9776  doi: 10.1021/ma8014454

    19. [19]

      Bates F S, Fredrickson G. Phys Today, 2000, 52: 32 − 38

    20. [20]

      Yang C, Yin T, Suo Z. J Mech Phys Solids, 2019, 131: 43 − 55  doi: 10.1016/j.jmps.2019.06.018

    21. [21]

      Zhong M, Wang R, Kawamoto K, Olsen B D, Johnson J A. Science, 2016, 353(6305): 1264 − 1268  doi: 10.1126/science.aag0184

    22. [22]

      Saalwaechter K, Seiffert S. Soft Matter, 2018, 14: 1976 − 1991  doi: 10.1039/C7SM02444D

    23. [23]

      Saalwachter K, Chasse W, Sommer J U. Soft Matter, 2013, 9: 6587 − 6593  doi: 10.1039/c3sm50194a

    24. [24]

    25. [25]

      Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37 − 49  doi: 10.11777/j.issn1000-3304.2017.16262

    26. [26]

      Kuo S W, Chang F C. Macromolecules, 2001, 34(15): 5224 − 5228  doi: 10.1021/ma010517a

    27. [27]

      He Y, Zhu B, Inoue Y. Prog Polym Sci, 2004, 29(10): 1021 − 1051  doi: 10.1016/j.progpolymsci.2004.07.002

    28. [28]

      Tseng T C, Kuo S W. Macromolecules, 2018, 51(16): 6451 − 6459  doi: 10.1021/acs.macromol.8b00751

    29. [29]

      Rhim W K, Pines A, Waugh J S. Phys Rev B, 1971, 3(3): 684 − 696  doi: 10.1103/PhysRevB.3.684

    30. [30]

      Mauri M, Thomann Y, Schneider H, Saalwächter K. Solid State Nucl Magn Reson, 2008, 34(1-2): 125 − 141  doi: 10.1016/j.ssnmr.2008.07.001

    31. [31]

      Maus A, Hertlein C, Saalwächter K. Macro Chem Phys, 2006, 207(13): 1150 − 1158  doi: 10.1002/macp.200600169

    32. [32]

      Zhang R, Yu S, Chen S, Wu Q, Chen T, Sun P, Li B, Ding D. J Phys Chem B, 2014, 118(4): 1126 − 1137  doi: 10.1021/jp409893f

    33. [33]

      Wang F, Zhang R, Lin A, Chen R, Wu Q, Chen T, Sun P. Polymer, 2016, 107: 61 − 70  doi: 10.1016/j.polymer.2016.11.009

    34. [34]

      Zhao Shouyuan(赵守远), Wang Yuanyuan(王媛媛), Zhang Rongchun(张荣纯), Chen Tiehong(陈铁红), Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志), 2014, 31(2): 172 − 184  doi: 10.3969/j.issn.1000-4556.2014.02.004

    35. [35]

      Anderson P W, Weiss P. Rev Mod Phys, 1953, 25(1): 269 − 276  doi: 10.1103/RevModPhys.25.269

    36. [36]

      Papon A, Saalwächter K, Schäler K, Guy L, Lequeux F, Montes H. Macromolecules, 2011, 44(4): 913 − 922  doi: 10.1021/ma102486x

    37. [37]

      Zhang R, Yan T, Lechner B-D, Schröter K, Liang Y, Li B, Furtado F, Sun P, Saalwächter K. Macromolecules, 2013, 46(5): 1841 − 1850  doi: 10.1021/ma400019m

    38. [38]

      Sturniolo S, Saalwächter K. Chem Phys Lett, 2011, 516(1-3): 106 − 110  doi: 10.1016/j.cplett.2011.09.059

    39. [39]

      Saalwachter K. Prog Nucl Magn Reson Spectrosc, 2007, 51(1): 1 − 35  doi: 10.1016/j.pnmrs.2007.01.001

    40. [40]

      Saalwächter K. Multiple-Quantum NMR studies of anisotropic polymer chain dynamics. In: Webb G A, ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 38

    41. [41]

      Chassé W, Saalwächter K, Sommer J U. Macromolecules, 2012, 45(13): 5513 − 5523  doi: 10.1021/ma3009004

    42. [42]

      Zou X, Kui X, Zhang R, Zhang Y, Wang X, Wu Q, Chen T, Sun P. Macromolecules, 2017, 50(23): 9340 − 9352  doi: 10.1021/acs.macromol.7b01854

    43. [43]

      Saalwächter K, Heuer A. Macromolecules, 2006, 39(9): 3291 − 3303  doi: 10.1021/ma052567b

    44. [44]

      Saalwächter K, Herrero B, López-Manchado M A. Macromolecules, 2005, 38(23): 9650 − 9660  doi: 10.1021/ma051238g

    45. [45]

      Chasse W, Valentin J L, Genesky G D, Cohen C, Saalwächter K. J Chem Phys, 2011, 134(4): 044907

    46. [46]

      Voda M, Demco D, Perlo J, Orza R, Blümich B. J Magn Reson, 2005, 172(1): 98 − 109  doi: 10.1016/j.jmr.2004.10.001

    47. [47]

      Fechete R, Demco D, Blümich B. Macromolecules, 2002, 35(16): 6083 − 6085  doi: 10.1021/ma020532v

    48. [48]

      Baum J, Pines A. J Am Chem Soc, 1986, 108(24): 7447 − 7454  doi: 10.1021/ja00284a001

    49. [49]

      Wang M, Bertmer M, Demco D, Blümich B, Litvinov V, Barthel H. Macromolecules, 2003, 36(12): 4411 − 4413  doi: 10.1021/ma0217534

    50. [50]

      Gao Y, Zhang R, Lv W, Liu Q, Wang X, Sun P, Winter H H, Xue G. J Phys Chem C, 2014, 118(10): 5606 − 5614  doi: 10.1021/jp5013472

    51. [51]

      Saalwächter K, Kleinschmidt F, Sommer J U. Macromolecules, 2004, 37(23): 8556 − 8568  doi: 10.1021/ma048803k

    52. [52]

      Wang F, Chen S, Wu Q, Zhang R, Sun P. Polymer, 2019, 163: 154 − 161  doi: 10.1016/j.polymer.2018.12.062

    53. [53]

      Demco D E, Johansson A, Tegenfeldt J. Solid State Nucl Magn Reson, 1995, 4(1): 13 − 38  doi: 10.1016/0926-2040(94)00036-C

    54. [54]

      Huang C, Huang G, Li S, Luo M, Liu H, Fu X, Qu W, Xie Z, Wu J. Polymer, 2018, 154: 90 − 100  doi: 10.1016/j.polymer.2018.08.057

    55. [55]

      Liu H, Huang G S, Wei L Y, Zeng J, Fu X, Huang C, Wu J R. Chinese J Polym Sci, 2019, 37(11): 1142 − 1151  doi: 10.1007/s10118-019-2267-3

    56. [56]

      Kim S Y, Meyer H W, Saalwächter K, Zukoski C F. Macromolecules, 2012, 45(10): 4225 − 4237  doi: 10.1021/ma300439k

    57. [57]

      Ott M, Pérez-Aparicio R, Schneider H, Sotta P, Saalwächter K. Macromolecules, 2014, 47(21): 7597 − 7611  doi: 10.1021/ma5012655

    58. [58]

      Coleman M M, Painter P C, Graf J F. Specific Interactions and the Miscibility of Polymer Blends. New York: CRC Press, 2017

    59. [59]

      Tian D, Li T, Zhang R, Wu Q, Chen T, Sun P, Ramamoorthy A. J Phys Chem B, 2017, 121(25): 6108 − 6116  doi: 10.1021/acs.jpcb.7b02838

    60. [60]

      Radloff D, Boeffel C, Spiess H W. Macromolecules, 1996, 29(5): 1528 − 1534  doi: 10.1021/ma950405h

    61. [61]

      Zhang C, Yang Z, Duong N T, Li X, Nishiyama Y, Wu Q, Zhang R, Sun P. Macromolecules, 2019, 52(13): 5014 − 5025  doi: 10.1021/acs.macromol.9b00503

    62. [62]

      Li M, Zhang R, Li X, Wu Q, Chen T, Sun P. Polymer, 2018, 148: 127 − 137  doi: 10.1016/j.polymer.2018.06.024

    63. [63]

      Yang Z, Wang F, Zhang C, Li J, Zhang R, Wu Q, Chen T, Sun P. Polym Chem, 2019, 10(24): 3362 − 3370  doi: 10.1039/C9PY00383E

    64. [64]

      Wojtecki R J, Meador M A, Rowan S J. Nat Mater, 2011, 10(1): 14 − 27  doi: 10.1038/nmat2891

    65. [65]

      Fantner G E, Hassenkam T, Kindt J H, Weaver J C, Birkedal H, Pechenik L, Cutroni J A, Cidade G A G, Stucky G D, Morse D E, Hansma P K. Nat Mater, 2005, 4(8): 612 − 616  doi: 10.1038/nmat1428

    66. [66]

      Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12(10): 932 − 937  doi: 10.1038/nmat3713

    67. [67]

      Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Lange R F M, Lowe J K L, Meijer E W. Science, 1997, 278(5343): 1601 − 1604  doi: 10.1126/science.278.5343.1601

    68. [68]

      Robertson A J, Pandey M K, Marsh A, Nishiyama Y, Brown S P. J Magn Reson, 2015, 260: 89 − 97  doi: 10.1016/j.jmr.2015.09.005

    69. [69]

      Zhang R, Mroue K H, Ramamoorthy A. Acc Chem Res, 2017, 50(4): 1105 − 1113  doi: 10.1021/acs.accounts.7b00082

    70. [70]

      Schaefer J, Stejskal E. J Am Chem Soc, 1976, 98(4): 1031 − 1032  doi: 10.1021/ja00420a036

    71. [71]

      Pines A, Gibby M G, Waugh J. J Chem Phys, 1973, 59(2): 569 − 590  doi: 10.1063/1.1680061

    72. [72]

      Zhang R, Mroue K H, Ramamoorthy A. J Magn Reson, 2016, 266: 59 − 66  doi: 10.1016/j.jmr.2016.03.006

    73. [73]

      Zhang R, Nishiyama Y, Ramamoorthy A. J Magn Reson, 2019, 309: 106615  doi: 10.1016/j.jmr.2019.106615

    74. [74]

      Zhang R, Duong N T, Nishiyama Y, Ramamoorthy A. J Phys Chem B, 2017, 121(24): 5944 − 5952  doi: 10.1021/acs.jpcb.7b03480

    75. [75]

      Zhang R, Mroue K H, Sun P, Ramamoorthy A. High-resolution proton NMR spectroscopy of polymers and biological solids. In: Webb G A. ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 25

    76. [76]

      Zhang R, Chen Y, Rodriguez-Hornedo N, Ramamoorthy A. ChemPhysChem, 2016, 17(19): 2962 − 2966  doi: 10.1002/cphc.201600637

    77. [77]

      Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Patrick C A V, Herzfeld J, Temkin R J, Griffin R G. J Chem Phys, 2008, 128(5): 052211  doi: 10.1063/1.2833582

  • 加载中
    1. [1]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(0)
  • Abstract views(204)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return