Citation: Dong Wang, Li-ying Li, Hong-jun Ke, Kong-li Xu, Shan Lu, Wen-hua Gong, Huan Zhang, Guo-yong Wang, Ying-min Zhao, Ning Zhao. Preparation and Properties of Recyclable High-performance Epoxy Resins and Composites[J]. Acta Polymerica Sinica, ;2020, 51(3): 303-310. doi: 10.11777/j.issn1000-3304.2019.19167 shu

Preparation and Properties of Recyclable High-performance Epoxy Resins and Composites

  • Aiming at the demands for recyclable resins and composites in practical applications, high performance recyclable epoxy resins with excellent comprehensive properties are prepared using methyl teterahydrophthalic anhydride as the curing agent and zinc acetylacetonate hydrate as the catalyst. The effects of anhydride and catalyst concentrations on the structure, thermal and dynamic properties of epoxy vitrimers are systematically explored to achieve the resin formulation optimization. With the decrease of anhydride concentrations, the cross-linking densities decrease, and the epoxy vitrimers show decreased glass transition temperature (Tg) but enhanced dynamic properties, which is attributed to the sufficient hydroxyl groups in structure that could trigger the transesterification exchange reactions with ester bonds. The increase of catalyst concentrations can also lead to enhanced dynamic properties as a result of the accelerated transesterification rates. The epoxy vitrimer with epoxy/anhydride/catalyst ratios of 1:0.5:0.05 displays optimal comprehensive performance with intermediate thermal properties and excellent dynamic properties. Based on the dynamic transesterification reaction, the epoxy vitrimers can be well reprocessed by the physically hot pressing methods at 180 °C for 6 h under a pressure of 10 MPa, and the recycling efficiency can be up to 80%. Moreover, the epoxy vitrimer-based carbon fiber reinforced composites are prepared by the resin transfer molding (RTM) technique. The prepared carbon fabric composites show a tensile strength of 479 MPa and tensile modulus of 58 GPa, revealing comparable mechanical properties to those of traditional thermoset composites. After heating the composites in ethylene glycol solvent at 180 °C for 8 h, the clean carbon fiber fabric with the same dimension as fresh ones can be reclaimed due to the dissolution of epoxy vitrimer binder in alcohol solvent via transesterification. In addition, the collected dissolved polymers can form vitrimers again by evaporating the EG solvent in open air at 180 °C for 12 h. It is demonstrated that the carbon fibers and epoxy polymers can both be fully recycled from the composites by the alcohol solvent dissolution method.
  • 加载中
    1. [1]

      Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. Science, 2015, 347: 768 − 771  doi: 10.1126/science.1260352

    2. [2]

      Denissen W, Winne J M, Du Prez F E. Chem Sci, 2016, 7: 30 − 38  doi: 10.1039/C5SC02223A

    3. [3]

      Imbernon L, Norvez S. Eur Polym J, 2016, 82: 347 − 376  doi: 10.1016/j.eurpolymj.2016.03.016

    4. [4]

      Röttger M, Domenech T, van der Weegen R, Breuillac A, Nicolaÿ R, Leibler L. Science, 2017, 356: 62 − 65  doi: 10.1126/science.aah5281

    5. [5]

      Fortman D J, Brutman J P, De Hoe G X, Snyder R L, Dichtel W R, Hillmyer M A. ACS Sustain Chem Eng, 2018, 6: 11145 − 11159  doi: 10.1021/acssuschemeng.8b02355

    6. [6]

      Zhang Zeping(张泽平), Rong Minzhi(容敏智), Zhang Mingqiu(章明秋). Acta Polymerica Sinica(高分子学报), 2018, (7): 829 − 852  doi: 10.11777/j.issn1000-3304.2018.18060

    7. [7]

      Huang Xin(黄鑫), Liu Hanchao(刘汉超), Fan Zheng(樊正), Wang Hao(王豪), Huang Guangsu(黄光速), Wu Jinrong (吴锦荣). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 535 − 542

    8. [8]

      Montarnal D, Capelot M, Tournilhac F, Leibler L. Science, 2011, 334: 965 − 968  doi: 10.1126/science.1212648

    9. [9]

      Lan Xiaoyu(兰晓雨), Ma Xiaofeng(马晓峰), Dai Peng(戴鹏), Li Bengang(李本刚), Luo Zhenyang(罗振扬). Polymer Bulletin(高分子通报), 2018, (3): 31 − 39

    10. [10]

      Chen Xingxing(陈兴幸), Zhong Qianyun(钟倩云), Wang Shujuan(王淑娟), Wu Youshen(吴宥伸), Tan Jidong(谭继东), Lei Hengxin(雷恒鑫), Huang Shaoyong(黄绍永), Zhang Yanfeng(张彦峰). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 469 − 484

    11. [11]

      Long R, Qi H J, Dunn M L. Soft Matter, 2013, 9: 4083 − 4096  doi: 10.1039/c3sm27945f

    12. [12]

      Capelot M, Montarnal D, Tournilhac F, Leibler L. J Am Chem Soc, 2012, 134: 7664 − 7667  doi: 10.1021/ja302894k

    13. [13]

      Capelot M, Unterlass M M, Tournilhac F, Leibler L. ACS Macro Lett, 2012, 1: 789 − 792  doi: 10.1021/mz300239f

    14. [14]

      Brutman J P, Delgado P A, Hillmyer M A. ACS Macro Lett, 2014, 3: 607 − 610  doi: 10.1021/mz500269w

    15. [15]

      Pei Z, Yang Y, Chen Q, Terentjev E M, Wei Y, Ji Y. Nat Mater, 2014, 13: 36 − 41  doi: 10.1038/nmat3812

    16. [16]

      Yang Z, Wang Q, Wang T. ACS Appl Mater Interfaces, 2016, 8: 21691 − 21699  doi: 10.1021/acsami.6b07403

    17. [17]

      Imbernon L, Norvez S, Leibler L. Macromolecules, 2016, 49: 2172 − 2178  doi: 10.1021/acs.macromol.5b02751

    18. [18]

      Shi Q, Yu K, Kuang X, Mu X, Dunn C K, Dunn M L, Wang T, Qi H J. Mater Horiz, 2017, 4: 598 − 607  doi: 10.1039/C7MH00043J

    19. [19]

      Liu W, Schmidt D F, Reynaud E. Ind Eng Chem Res, 2017, 56: 2667 − 2672  doi: 10.1021/acs.iecr.6b03829

    20. [20]

      Zhang H, Cai C, Liu W, Li D, Zhang J, Zhao N, Xu J. Sci Rep, 2017, 7: 11833  doi: 10.1038/s41598-017-11485-6

    21. [21]

      Yang Yang(杨洋), Zhang Xiqi(张锡奇), Wei Yen(危岩), Ji Yan(吉岩). Acta Polymerica Sinica(高分子学报), 2017, (10): 1662 − 1667  doi: 10.11777/j.issn1000-3304.2017.17134

    22. [22]

      Yu K, Taynton P, Zhang W, Dunn M L, Qi H J. RSC Adv, 2014, 4: 10108 − 10117  doi: 10.1039/C3RA47438K

    23. [23]

      Demongeot A, Mougnier S J, Okada S, Soulié-Ziakovic C, Tournilhac F. Polym Chem, 2016, 7: 4486 − 4493  doi: 10.1039/C6PY00752J

    24. [24]

      Yu K, Shi Q, Dunn M L, Wang T, Qi H J. Adv Funct Mater, 2016, 26: 6098 − 6106  doi: 10.1002/adfm.201602056

    25. [25]

      Altuna F I, Pettarin V, Williams R J J. Green Chem, 2013, 15: 3360 − 3366  doi: 10.1039/c3gc41384e

    26. [26]

      Yang Y, Pei Z, Zhang X, Tao L, Wei Y, Ji Y. Chem Sci, 2014, 5: 3486 − 3492  doi: 10.1039/C4SC00543K

    27. [27]

      Yang Y, Pei Z, Li Z, Wei Y, Ji Y. J Am Chem Soc, 2016, 138: 2118 − 2121  doi: 10.1021/jacs.5b12531

    28. [28]

      Pei Z, Yang Y, Chen Q, Wei Y, Ji Y. Adv Mater, 2016, 28: 156 − 160  doi: 10.1002/adma.201503789

    29. [29]

      Liu T, Hao C, Wang L, Li Y, Liu W, Xin J, Zhang J. Macromolecules, 2017, 50: 8588 − 8597  doi: 10.1021/acs.macromol.7b01889

    30. [30]

      Chabert E, Vial J, Cauchois J P, Mihaluta M, Tournilhac F. Soft Matter, 2016, 12: 4838 − 4845  doi: 10.1039/C6SM00257A

    31. [31]

      Lu L, Pan J, Li G. J Mater Chem A, 2017, 5: 21505 − 21513  doi: 10.1039/C7TA06397K

    32. [32]

      Liu T, Hao C, Zhang S, Yang X, Wang L, Han J, Li Y, Xin J, Zhang J. Macromolecules, 2018, 51: 5577 − 5585  doi: 10.1021/acs.macromol.8b01010

    33. [33]

      Kuang X, Shi Q, Zhou Y, Zhao Z, Wang T, Qi H J. RSC Adv, 2018, 8: 1493 − 1502  doi: 10.1039/C7RA12787A

    34. [34]

      Kuang X, Guo E, Chen K, Qi H J. ACS Sustain Chem Eng, 2019, 7: 6880 − 6888  doi: 10.1021/acssuschemeng.8b06409

    35. [35]

      Kuang X, Zhou Y, Shi Q, Wang T, Qi H J. ACS Sustain Chem Eng, 2018, 6: 9189 − 9197  doi: 10.1021/acssuschemeng.8b01538

    36. [36]

      Li Liying(李丽英), Meng Songhe(孟松鹤), Xu Chenghai(许承海), Zhang Tao(张涛), Wang Guoyong(王国勇), Liu Jianjun(刘建军). Materials Science and Technology(材料科学与工艺), 2015, 23: 6 − 12  doi: 10.11951/j.issn.1005-0299.20150502

  • 加载中
    1. [1]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    10. [10]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(0)
  • Abstract views(302)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return