Citation: Huan-yu Lei, Guo-feng Tian, Mei-feng Xiao, Xiao-lan Li, Sheng-li Qi, De-zhen Wu. Application of Molecular Simulation in the Study of Polyimide[J]. Acta Polymerica Sinica, ;2019, 50(12): 1253-1262. doi: 10.11777/j.issn1000-3304.2019.19157 shu

Application of Molecular Simulation in the Study of Polyimide

  • Featured by its outstanding thermo-oxidative stability and excellent mechanical properties, polyimide has aroused growing research interests. The hierarchical structure of polyimide (PI), which largely influences its thermal, mechanical, and photoelectric properties, can be well adjusted by carefully regulating the chemical composition. In this review, we primarily focus on the employment of molecular simulation for unravelling and interpreting the structure-property relationship of PI materials, and summarize the recent progress both at home and aboard on the research of multi-scale PI structures. The molecular chain structures of PI can be finely analyzed in terms of the chains conformation, characteristic ratio and torsion energy barrier, while the thermal and mechanical properties are properly explained from the perspective of molecular chain constitutions, chains movement and the packing state of PI chains. Meanwhile, the highly concerned force field has been used in molecular dynamic (MD) simulation of PI thermal-mechanical behaviours. MD simulation or Monte Carlo (MC) simulation also works well for understanding the gas separation performance of PI materials through the fractional free volume (FFV) of PI molecules or the dissolution and diffusion patterns of small molecules in novel PI framework with particular main-chain or side-chain structures. Furthermore, the studies on PI-based composites are basically concentrated on the exploration of interfacial properties between PI and other materials, including the simulated binding energy and small-scale interactions like the van der Waals forces and electrostatic interactions. The development trend of computer simulation in PI-related research is briefly discussed in the end, so as to provide valuable guidance for the performance optimization of PI materials as well as some useful thoughts on the design and preparation of functional PI molecules.
  • 加载中
    1. [1]

      Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7): 907 − 974  doi: 10.1016/j.progpolymsci.2012.02.005

    2. [2]

      Ni H J, Liu J G, Wang Z H, Yang S Y. J Ind Eng Chem, 2015, 28: 16 − 27  doi: 10.1016/j.jiec.2015.03.013

    3. [3]

      Favvas E P, Katsaros F K, Papageorgiou S K, Sapalidis A A, Mitropoulos A C. React Funct Polym, 2017, 120: 104 − 130  doi: 10.1016/j.reactfunctpolym.2017.09.002

    4. [4]

      Ding Y, Hou H, Zhao Y, Zhu Z, Fong H. Prog Polym Sci, 2016, 61: 67 − 103  doi: 10.1016/j.progpolymsci.2016.06.006

    5. [5]

      Li C, Strachan A. J Polym Sci, Part B: Polym Phys, 2015, 53(2): 103 − 122  doi: 10.1002/polb.23489

    6. [6]

      Pan Rui(潘睿), Gu Yi(顾宜). Polymer Materials Science & Engineering(高分子材料科学与工程), 2005, 21(1): 15 − 19  doi: 10.3321/j.issn:1000-7555.2005.01.004

    7. [7]

      Zeng Q H, Yu A B, Lu G Q. Prog Polym Sci, 2008, 33(2): 191 − 269  doi: 10.1016/j.progpolymsci.2007.09.002

    8. [8]

      Allen M P. Molecar simulation methods for soft matter. In: Garrido P L, Hurtado P I, Marro J. eds. AIP Conf Proc, 2009. Doi: 10.1063/1.3082281

    9. [9]

      Pan R, Liu X, Zhang A, Gu Y. Comp Mater Sci, 2007, 39(4): 887 − 895  doi: 10.1016/j.commatsci.2006.10.019

    10. [10]

      Pan R, Zhao W, Song L, Gu Y. Comp Mater Sci, 2008, 44(2): 439 − 442  doi: 10.1016/j.commatsci.2008.04.003

    11. [11]

      Li M, Lai H, Chen B, Liu X, Gu Y. Liq Cryst, 2010, 37(2): 149 − 158  doi: 10.1080/02678290903420234

    12. [12]

      Wang X, Wang H, Luo L, Huang J, Gao J, Liu X. RSC Adv, 2012, 2(25): 9463 − 9472  doi: 10.1039/c2ra21647g

    13. [13]

      Liu X, Wang X, Lai H, Chen S, Li M, Peng C, Gu Y. Liq Cryst, 2009, 37(1): 115 − 119  doi: 10.1080/02678290903419061

    14. [14]

      Wang Y, Yang Y, Jia Z, Qin J, Gu Y. Polymer, 2012, 53(19): 4157 − 4163  doi: 10.1016/j.polymer.2012.07.034

    15. [15]

      Goyal S, Park H H, Lee S H, Savoy E, McKenzie M E, Rammohan A R, Mauro J C, Kim H, Min K, Cho E. J Phys Chem C, 2016, 120(41): 23631 − 23639  doi: 10.1021/acs.jpcc.6b08081

    16. [16]

      Jin W K, Choi K, Jo W H, Hsu S L. Polymer, 1998, 39(26): 7079 − 7087  doi: 10.1016/S0032-3861(98)00071-8

    17. [17]

      Zhang R, Mattice W L. Macromolecules, 1993, 26(22): 6100 − 6105  doi: 10.1021/ma00074a035

    18. [18]

      Liang T, Yang X, Zhang X. J Polym Sci, Part B: Polym Phys, 2001, 39: 2243 − 2251  doi: 10.1002/polb.1198

    19. [19]

      Cao L, Zhang M, Niu H, Chang J, Liu W, Yang H, Cao W, Wu D. J Mater Sci, 2017, 52(4): 1883 − 1897  doi: 10.1007/s10853-016-0477-4

    20. [20]

      Lyulin S V, Larin S V, Gurtovenko A A, Lukasheva N V, Yudin V E, Svetlichnyi V M, Lyulin A V. Polym Sci Ser A, 2012, 54(8): 631 − 643  doi: 10.1134/S0965545X12070048

    21. [21]

      Pérez G, Terraza C A, Coll D, Ortiz P, Aguilar-Vega M, González D M, Tagle L H, Tundidor-Camba A. Polymer, 2019, 162: 121 − 129  doi: 10.1016/j.polymer.2018.12.042

    22. [22]

      Fan Zhenguo(范振国), Chen Wenxin(陈文欣), Wei Shiyang(魏世洋), Liu Teng(刘腾), Liu Siwei(刘四委),Chi Zhenguo(池振国), Zhang Yi(张艺), Xu Jiarui(许家瑞). Acta Polymerica Sinica(高分子学报), 2019, (2): 179 − 188  doi: 10.11777/j.issn1000-3304.2018.18183

    23. [23]

      Lyulin A V, Balabaev N K, Michels M A J. Macromolecules, 2003, 36(22): 8574 − 8575  doi: 10.1021/ma034406i

    24. [24]

      Lei H Y, Qi S L, Wu D Z. Polymer, 2019, 179(28): 121645

    25. [25]

      Yang Wenlong(杨文龙), Han Junsheng(韩浚生), Wang Yu(王宇), Lin Jiaqi(林家齐), He Guoqiang(何国强), Sun Hongguo(孙洪国). Acta Physica Sinica(物理学报), 2017, 66(22): 257 − 265

    26. [26]

      Vollmayr K, Kob W, Binder K J. Chem Phys, 1996, 105(11): 4714 − 4728

    27. [27]

      Cousin T, Galy J, Dupuy J. Polymer, 2012, 53(15): 3203 − 3210  doi: 10.1016/j.polymer.2012.05.051

    28. [28]

      Lyulin S V, Larin S V, Gurtovenko A A, Nazarychev V M, Falkovich S G, Yudin V E, Svetlichnyi V M, Gofman I V, Lyulin A V. Soft Matter, 2014, 10(8): 1224 − 1232  doi: 10.1039/c3sm52521j

    29. [29]

      Lyulin S V, Gurtovenko A A, Larin S V, Nazarychev V M, Lyulin A V. Macromolecules, 2013, 46(15): 6357 − 6363  doi: 10.1021/ma4011632

    30. [30]

      Nazarychev V M, Larin S V, Yakimansky A V, Lukasheva N V, Gurtovenko A A, Gofman I V, Yudin V E, Svetlichnyi V M, Kenny J M, Lyulin S V. J Polym Sci, Part B: Polym Phys, 2015, 53(13): 912 − 923  doi: 10.1002/polb.23715

    31. [31]

      Nam K H, Kim H, Choi H K, Yeo H, Goh M, Yu J, Hahn J R, Han H, Ku B C, You N H. Polymer, 2017, 108: 502 − 512  doi: 10.1016/j.polymer.2016.11.062

    32. [32]

      Zhou H, Lei H Y, Wang J H, Qi S L, Tian G F, Wu D Z. Polymer, 2019, 162: 116 − 120  doi: 10.1016/j.polymer.2018.12.033

    33. [33]

      Li X L, Lei H Y, Guo J C, Wang J H, Qi S L, Tian G F, Wu D Z. J Appl Polym Sci, 2019, 136(39): 47989  doi: 10.1002/app.47989

    34. [34]

      Zhang M Y, Niu H Q, Qi S L, Tian G F, Wang X D, Wu D Z. Mater Today Commun, 2014, 1(1-2): 1 − 8  doi: 10.1016/j.mtcomm.2014.08.001

    35. [35]

      Lu X, Wang X, Li Q, Huang X, Han S, Wang G. Polym Degrad Stabil, 2015, 114: 72 − 80  doi: 10.1016/j.polymdegradstab.2015.02.004

    36. [36]

      Adams J S., Itta A K, Zhang C, Wenz G B, Sanyal O, Koros W J. Carbon, 2019, 141: 238 − 246  doi: 10.1016/j.carbon.2018.09.039

    37. [37]

      Hodgkin J H, Dao B N. Eur Polym J, 2009, 45(11): 3081 − 3092  doi: 10.1016/j.eurpolymj.2009.08.014

    38. [38]

      Hodgkin J H, Liu M S, Dao B N, Mardel J, Hill A J. Eur Polym J, 2011, 47(3): 394 − 400  doi: 10.1016/j.eurpolymj.2010.12.014

    39. [39]

      Park C H, Tocci E, Lee Y M, Drioli E. J Phys Chem B, 2012, 116(42): 12864 − 12877  doi: 10.1021/jp307365y

    40. [40]

      Yang S, Choi J, Cho M. ACS Appl Mater Interfaces, 2012, 4(9): 4792 − 4799  doi: 10.1021/am301144z

    41. [41]

      Sun Weifeng(孙伟峰), Wang Xuan(王暄). Acta Physica Sinica(物理学报), 2013, 62(18): 358 − 366

    42. [42]

      Lin Jiaqi(林家齐), Li Xiaokang(李晓康), Yang Wenlong(杨文龙), Sun Hongguo(孙洪国), Xie Zhibin(谢志滨), Xiu Hanjiang(修翰江), Lei Qingquan(雷清泉). Acta Physica Sinica(物理学报), 2015, 64(12): 339 − 346

    43. [43]

      Nazarychev V M, Lyulin A V, Larin S V, Gurtovenko A A, Kenny J M, Lyulin S V. Soft Matter, 2016, 12(17): 3972 − 3981  doi: 10.1039/C6SM00230G

    44. [44]

      Nazarychev V M, Lyulin A V, Larin S V, Gofman I V, Kenny J M, Lyulin S V. Macromolecules, 2016, 49(17): 6700 − 6710  doi: 10.1021/acs.macromol.6b00602

    45. [45]

      Nazarychev V M, Dobrovskiy A Y, Larin S V, Lyulin A V, Lyulin S V. J Polym Sci, Part B: Polym Phys, 2018, 56(5): 375 − 382  doi: 10.1002/polb.24550

    46. [46]

      Lei H Y, Zhang M Y, Niu H Q, Qi S L, Tian G F, Wu D Z. Polymer, 2018, 149: 96 − 105  doi: 10.1016/j.polymer.2018.06.067

    47. [47]

      Tong H, Hu C, Yang S, Ma Y, Guo H, Fan L. Polymer, 2015, 69: 138 − 147  doi: 10.1016/j.polymer.2015.05.045

    48. [48]

      Luo S, Wiegand J R, Gao P, Doherty C M, Hill A J, Guo R. J Membr Sci, 2016, 518: 100 − 109  doi: 10.1016/j.memsci.2016.06.034

    49. [49]

      Aguilar-Lugo C, Santiago-García J L, Loría-Bastarrachea M I, Guzmán-Lucero D, Alexandrova L, Aguilar-Vega M. J Polym Res, 2016, 23(3): 49  doi: 10.1007/s10965-016-0939-z

    50. [50]

      Liu Y, Huang J, Tan J, Zeng Y, Liu J, Zhang H, Pei Y, Xiang X, Liu Y. Polymer, 2017, 114: 289 − 297  doi: 10.1016/j.polymer.2017.03.006

    51. [51]

      Tan P C, Ooi B S, Ahmad A L, Low S C. J Appl Polym Sci, 2018, 135(14): 46073  doi: 10.1002/app.46073

    52. [52]

      Hofmann D, Fritz L, Ulbrich J, Paul D. Comput Theor Polym S, 2000, 10(5): 419 − 436  doi: 10.1016/S1089-3156(00)00007-6

    53. [53]

      Heuchel M, Hofmann D. Desalination, 2002, 144(1): 67 − 72

    54. [54]

      Heuchel M, Hofmann D, Pullumbi P. Macromolecules, 2004, 37(1): 201 − 214  doi: 10.1021/ma035360w

    55. [55]

      Hölck O, Böhning M, Heuchel M, Siegert M R, Hofmann D. J Membr Sci, 2013, 428: 523 − 532  doi: 10.1016/j.memsci.2012.10.023

    56. [56]

      Chang K S, Wu Z C, Kim S, Tung K L, Lee Y M, Lin Y F, Lai J Y. J Membr Sci, 2014, 454: 1 − 11  doi: 10.1016/j.memsci.2013.11.047

    57. [57]

      Park C H, Tocci E, Kim S, Kumar A, Lee Y M, Drioli E. J Phys Chem B, 2014, 118(10): 2746 − 2757  doi: 10.1021/jp411612g

    58. [58]

      Zhang L, Xiao Y, Chung T S, Jiang J. Polymer, 2010, 51(19): 4439 − 4447  doi: 10.1016/j.polymer.2010.07.032

    59. [59]

      Swaidan R, Ghanem B, Al-Saeedi M, Litwiller E, Pinnau I. Macromolecules, 2014, 47(21): 7453 − 7462  doi: 10.1021/ma501798v

    60. [60]

      Velioğlu S, Ahunbay M G, Tantekin-Ersolmaz S B. J Membr Sci, 2016, 501: 179 − 190  doi: 10.1016/j.memsci.2015.11.034

    61. [61]

      Pramoda K P, Mya K Y, Lin T T, Lu X, He C. Polym Eng Sci, 2012, 52(12): 2530 − 2536  doi: 10.1002/pen.23208

    62. [62]

      Zhao Y, Qi X, Ma J, Song L, Yang Y, Yang Q. J Appl Polym Sci, 2018, 135(4): 45725  doi: 10.1002/app.45725

    63. [63]

      Min K, Kim Y, Goyal S, Lee S H, McKenzie M, Park H, Savoy E S, Rammohan A R, Mauro J C, Kim H, Chae K, Lee H S, Shin J, Cho E. Polymer, 2016, 98: 1 − 10  doi: 10.1016/j.polymer.2016.06.017

    64. [64]

      Min K, Rammohan A R, Lee H S, Shin J, Lee S H, Goyal S, Park H, Mauro J C, Stewart R, Botu V, Kim H, Cho E. Sci Rep, 2017, 7(1): 10475  doi: 10.1038/s41598-017-10994-8

    65. [65]

      Volgin I V, Larin S. V, Lyulin A V, Lyulin S V. Polymer, 2018, 145: 80 − 87  doi: 10.1016/j.polymer.2018.04.058

    66. [66]

      Clancy T C. Polymer, 2004, 45(20): 7001 − 7010  doi: 10.1016/j.polymer.2004.08.009

    67. [67]

      Chakrabarty A, Cagin T. Polymer, 2010, 51(12): 2786 − 2794  doi: 10.1016/j.polymer.2010.03.060

    68. [68]

      Hu C, Lu T, Guo H. J Membr Sci, 2018, 564: 146 − 158  doi: 10.1016/j.memsci.2018.07.008

    69. [69]

      Park C H, Tocci E, Fontananova E, Bahattab M A, Aljlil S A, Drioli E. J Membr Sci, 2016, 514: 195 − 209  doi: 10.1016/j.memsci.2016.04.011

    70. [70]

      Zhang G D, Fan L, Bai L, He M H, Zhai L, Mo S. Chinese J Polym Sci, 2018, 36(12): 1394 − 1402  doi: 10.1007/s10118-018-2155-2

    71. [71]

      Chen S, Li J, Wei L, Jin Y, Khosla T, Xiao J, Cheng B, Duan H. J Polym Eng, 2018, 38(9): 891 − 898  doi: 10.1515/polyeng-2017-0374

    72. [72]

      Abe A, Nakano T, Yamashita W, Fukukawa K, Okazaki M, Tamai S. ChemPhysChem, 2011, 12(7): 1367 − 1377  doi: 10.1002/cphc.201000835

    73. [73]

      Lin J Q, Leng J, Xia M H, Shi J H, Chi Q G. Mater Sci Forum, 2011, 694: 597 − 601  doi: 10.4028/www.scientific.net/MSF.694.597

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    3. [3]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    4. [4]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    7. [7]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    10. [10]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    13. [13]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    14. [14]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    17. [17]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(0)
  • Abstract views(123)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return