Citation: Hua Yue, Guang-hui Ma. Applications of Polymeric Micro/Nanoparticles in Engineered Vaccines[J]. Acta Polymerica Sinica, ;2020, 51(2): 125-135. doi: 10.11777/j.issn1000-3304.2019.19143 shu

Applications of Polymeric Micro/Nanoparticles in Engineered Vaccines

  • Corresponding author: Guang-hui Ma, ghma@ipe.ac.cn
  • Received Date: 2 August 2019
    Revised Date: 12 September 2019

  • With the increasing demand for preventing and controlling of new/sudden diseases, major infectious diseases and malignant tumors, vaccines that based on traditional experience await updated. In terms of the unique physio-chemical advantages, polymeric micro/nano particles have become the research hotspots in the field of biomedical delivery. However, the rational integration of the micro/nano particles into vaccine delivery system is a huge challenge. On the basis of our research on the preparation and application of polymer micro/nano particles, an advanced strategy that co-assembles the particle “chassis” and subunit vaccines into one engineered vaccine is proposed. During the 20-year systematic study, new functions of polymeric particles are developed, and important mechanisms for the enhanced cellular/mucosal immunity are clarified. Apart from the chassis with conventional physiochemical property, other chassises with lysosomal escape merit, unique properties (deformability or mobility), or “Immunoticket” advantage have been exploited. The present paper not only summarizes our work but also involves international research progress, which sheds light upon the engineered vaccine chassises for their on-demand design concept, relative mechanism and development.
  • 加载中
    1. [1]

      McClements D J. Biotechnol Adv, 2018, 36: 1 − 12

    2. [2]

      Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Acta Biomater, 2019, 85: 1 − 26  doi: 10.1016/j.actbio.2018.12.028

    3. [3]

      Ayer M, Klok H A. J Control Release, 2017, 259: 92 − 104  doi: 10.1016/j.jconrel.2017.01.048

    4. [4]

      Preis I, Langer R S. J Immunol Methods, 1979, 28(1-2): 193 − 197  doi: 10.1016/0022-1759(79)90341-7

    5. [5]

      Irvine D J, Swartz M A, Szeto G L. Nat Mater, 2013, 12(11): 978 − 990  doi: 10.1038/nmat3775

    6. [6]

      Fenton O S, Olafson K N, Pillai P S, Mitchell M J, Langer R. Adv Mater, 2018, 30(29): e1705328

    7. [7]

      Shah R R, O'Hagan D T, Amiji M M, Brito L A. Nanomedicine (Lond), 2014, 9(17): 2671 − 81  doi: 10.2217/nnm.14.193

    8. [8]

      Oyewumi M O, Kumar A, Cui Z R. Expert Rev Vaccines, 2010, 9(9): 1095 − 1107  doi: 10.1586/erv.10.89

    9. [9]

      Ma G H. J Control Release, 2014, 193: 324 − 340  doi: 10.1016/j.jconrel.2014.09.003

    10. [10]

      Zhou Q Z, Wang L Y, Ma G H, Su Z G. J Membr Sci, 2008, 322(1): 98 − 104  doi: 10.1016/j.memsci.2008.05.025

    11. [11]

      Wei W, Wang L Y, Yuan L, Wei Q, Yang X D, Su Z G, Ma G H. Adv Funct Mater, 2007, 17(16): 3153 − 3158  doi: 10.1002/adfm.200700274

    12. [12]

      Wang L Y, Liu Q, Jia J L, Yang T Y, Ma G H. J Control Release, 2017, 259: e81  doi: 10.1016/j.jconrel.2017.03.179

    13. [13]

      Wu J, Wei W, Wang L Y, Su Z G, Ma G H. Colloid Surface B, 2008, 63(2): 164 − 175  doi: 10.1016/j.colsurfb.2007.11.021

    14. [14]

      Wei W, Ma G H, Hu G, Yu D, Mcleish T, Su Z G, Shen Z Y. J Am Chem Soc, 2008, 130(47): 15808 − 15810  doi: 10.1021/ja8039585

    15. [15]

      Yue H, Wei W, Yue Z G, Lv P P, Wang L Y, Ma G H, Su Z G. Eur J Pharm Sci, 2010, 41(5): 650 − 657  doi: 10.1016/j.ejps.2010.09.006

    16. [16]

      Wei Q, Wei W, Lai B, Wang L Y, Wang Y X, Su Z G, Ma G H. Int J Pharmaceut, 2008, 359(1-2): 294 − 297  doi: 10.1016/j.ijpharm.2008.03.027

    17. [17]

      Wang Y X, Qin J, Wei Y, Li C P, Ma G H. Powder Technol, 2013, 236: 107 − 113  doi: 10.1016/j.powtec.2012.04.060

    18. [18]

      Fan Q Z, Qi F, Miao C Y, Yue H, Gong F L, Wu J, Ma G H, Su Z G. Colloid Surface A, 2016, 500: 177 − 185  doi: 10.1016/j.colsurfa.2016.04.028

    19. [19]

      Wei W, Ma G H, Wang L Y, Wu J, Su Z G. Acta Biomater, 2010, 6(1): 205 − 209  doi: 10.1016/j.actbio.2009.06.005

    20. [20]

      Wei W, Yuan L, Hu G, Wang L Y, Wu H, Hu X, Su Z G, Ma G H. Adv Mater, 2008, 20(12): 2292 − 2296  doi: 10.1002/adma.200702663

    21. [21]

      Wei Y, Wang Y X, Zhang H X, Zhou W Q, Ma G H. J Colloid Interf Sci, 2016, 478: 46 − 53  doi: 10.1016/j.jcis.2016.05.045

    22. [22]

      Xia Y, Na X, Wu J, Ma G. Adv Mater, 2018, 31: 1801159  doi: 10.1002/adma.201801159

    23. [23]

      Liu Y Y, Chen X M, Wang L Y, Yang T Y, Yuan Q P, Ma G H. Particuology, 2014, 17: 74 − 80  doi: 10.1016/j.partic.2014.02.006

    24. [24]

      Wei W, Zhu D, Wang Z H, Ni D Z, Yue H, Wang S, Tao Y, Ma G H. J Mater Chem B, 2016, 4(15): 2548 − 2552  doi: 10.1039/C5TB02568K

    25. [25]

      Yue Z G, Wei W, Lv P P, Yue H, Wang L Y, Su Z G, Ma G H. Biomacromolecules, 2011, 12(7): 2440 − 2446  doi: 10.1021/bm101482r

    26. [26]

      Zhang W F, Wang L Y, Liu Y, Chen X M, Liu Q, Jia J L, Ma G H. J Control Release, 2015, 213: e113

    27. [27]

      Zhao L, Wei W, Huang Y D, Zhang R Y, Zhu K, Hao D X, Su Z G, Ma G H. J Immunol Methods, 2018, 460: 45 − 50  doi: 10.1016/j.jim.2018.06.008

    28. [28]

      Zhou W Q, Li J, Wei W, Su Z G, Ma G H. Colloid Surface A, 2011, 384(1-3): 549 − 554  doi: 10.1016/j.colsurfa.2011.05.018

    29. [29]

      Li X, Wei Y, Lv P P, Wu Y B, Ogino K, Ma G H. Colloid Surface A, 2019, 562: 237 − 246  doi: 10.1016/j.colsurfa.2018.11.014

    30. [30]

      Wei Y, Wang Y X, Wang W, Ho S V, Qi F, Ma G H, Su Z G. Langmuir, 2012, 28(39): 13984 − 13992  doi: 10.1021/la3017112

    31. [31]

      Wei Y, Wang Y X, Wang W, Ho S V, Wei W, Ma G H. J Mater Chem, 2011, 21(34): 12691 − 12699  doi: 10.1039/c1jm12643a

    32. [32]

      Mitragotri S, Lahann J. Nat Mater, 2009, 8(1): 15 − 23  doi: 10.1038/nmat2344

    33. [33]

      Sen Gupta A. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2016, 8(2): 255 − 270  doi: 10.1002/wnan.1362

    34. [34]

      Yang Y, Nie D, Liu Y, Yu M, Gan Y. Drug Discov Today, 2019, 24(2): 575 − 583  doi: 10.1016/j.drudis.2018.10.006

    35. [35]

      Benne N, van Duijn J, Kuiper J, Jiskoot W, Slutter B. J Control Release, 2016, 234: 124 − 34  doi: 10.1016/j.jconrel.2016.05.033

    36. [36]

      Yue H, Wei W, Fan B, Yue Z G, Wang L Y, Ma G H, Su Z G. Pharmacol Res, 2012, 65(2): 189 − 197  doi: 10.1016/j.phrs.2011.09.008

    37. [37]

      Jia J, Zhang W, Liu Q, Yang T, Wang L, Ma G. Mol Pharmaceut, 2017, 14(1): 14 − 22  doi: 10.1021/acs.molpharmaceut.6b00434

    38. [38]

      Bachmann M F, Jennings G T. Nat Rev Immunol, 2010, 10(11): 787 − 96  doi: 10.1038/nri2868

    39. [39]

      Lv P P, Ma Y F, Yu R, Yue H, Ni D Z, Wei W, Ma G H. Mol Pharmaceut, 2012, 9(6): 1736 − 1747  doi: 10.1021/mp300051h

    40. [40]

      Qiao C M, Liu J D, Yang J, Li Y, Weng J, Shao Y M, Zhang X. Biomaterials, 2016, 85: 1 − 17  doi: 10.1016/j.biomaterials.2016.01.054

    41. [41]

      Ni D Z, Qing S, Ding H, Yue H, Yu D, Wang S, Luo N N, Su Z G, Wei W, Ma G H. Adv Sci, 2017, 4(10): 1700083  doi: 10.1002/advs.201700083

    42. [42]

      Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T, Ijiro K, Sawa H. ACS Nano, 2013, 7(5): 3926 − 3938  doi: 10.1021/nn3057005

    43. [43]

      Chen X M, Liu Y Y, Wang L Y, Liu Y, Zhang W F, Fan B, Ma X W, Yuan Q P, Ma G H, Su Z G. Mol Pharmaceut, 2014, 11(6): 1772 − 1784  doi: 10.1021/mp400597z

    44. [44]

      Wang Y Q, Wu J, Fan Q Z, Zhou M, Yue Z G, Ma G H, Su Z G. Adv Healthc Mater, 2014, 3(5): 670 − 681  doi: 10.1002/adhm.201300335

    45. [45]

      Liu Q, Jia J L, Yang T Y, Fan Q Z, Wang L Y, Ma G H. Small, 2016, 12(13): 1744 − 1757  doi: 10.1002/smll.201503662

    46. [46]

      Wang S, Ni D, Yue H, Luo N, Xi X, Wang Y, Shi M, Wei W, Ma G. Small, 2018, 14(14): e1704272  doi: 10.1002/smll.201704272

    47. [47]

      Feng L, Wu L, Qu X. Adv Mater, 2013, 25(2): 168 − 186  doi: 10.1002/adma.201203229

    48. [48]

      Liu Y, Chen C Y, Qian P X, Lu X F, Sun B Y, Zhang X, Wang L M, Gao X F, Li H, Chen Z Y, Tang J L, Zhang W J, Dong J Q, Bai R, Lobie P E, Wu Q F, Liu S L, Zhang H F, Zhao F, Wicha M S, Zhu T, Zhao Y L. Nat Commun, 2015, 6: 5988  doi: 10.1038/ncomms6988

    49. [49]

      Lu X, Zhu Y, Bai R, Wu Z, Qian W, Yang L, Cai R, Yan H, Li T, Pandey V, Liu Y, Lobie P E, Chen C, Zhu T. Nat Nanotechnol, 2019, 14(7): 719 − 727  doi: 10.1038/s41565-019-0472-4

    50. [50]

      Yang K, Feng L Z, Shi X Z, Liu Z. Chem Soc Rev, 2013, 42(2): 530 − 547  doi: 10.1039/C2CS35342C

    51. [51]

      Yue H, Wei W, Yue Z G, Wang B, Luo N N, Gao Y J, Ma D, Ma G H, Su Z G. Biomaterials, 2012, 33(16): 4013 − 4021  doi: 10.1016/j.biomaterials.2012.02.021

    52. [52]

      Luo N, Ni D, Yue H, Wei W, Ma G H. ACS Appl Mater Interfaces, 2015, 7(9): 5239 − 5247  doi: 10.1021/am5084607

    53. [53]

      Luo N N, Weber J K, Wang S, Luan B Q, Yue H, Xi X B, Du J, Yang Z X, Wei W, Zhou R H, Ma G H. Nat Commun, 2017, 8: 14537  doi: 10.1038/ncomms14537

    54. [54]

      Chen P, Yue H, Zhai X, Huang Z, Ma G H, Wei W, Yan L T. Sci Adv, 2019, 5(6): eaaw3192  doi: 10.1126/sciadv.aaw3192

    55. [55]

      Yue H, Wei W, Gu Z L, Ni D Z, Luo N N, Yang Z X, Zhao L, Garate J A, Zhou R H, Su Z G, Ma G H. Nanoscale, 2015, 7(47): 19949 − 19957  doi: 10.1039/C5NR04986E

    56. [56]

      Bourouina N, Husson J, Hivroz C, Henry N. Langmuir, 2012, 28(14): 6106 − 6113  doi: 10.1021/la300398a

    57. [57]

      Ben M'Barek K, Molino D, Quignard S, Plamont M A, Chen Y, Chavrier P, Fattaccioli J. Biomaterials, 2015, 51: 270 − 277  doi: 10.1016/j.biomaterials.2015.02.030

    58. [58]

      Xia Y F, Wu J, Wei W, Du Y Q, Wan T, Ma X W, An W Q, Guo A Y, Miao C Y, Yue H, Li S G, Cao X T, Su Z G, Ma G H. Nat Mater, 2018, 17(2): 187 − 194  doi: 10.1038/nmat5057

    59. [59]

      Malissen B, Tamoutounour S, Henri S. Nat Rev Immunol, 2014, 14(6): 417 − 428  doi: 10.1038/nri3683

    60. [60]

      Xia Y, Wu J, Du Y, Miao C, Su Z, Ma G. Adv Mater, 2018, 30(31): e1801067  doi: 10.1002/adma.201801067

    61. [61]

      Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O. Immunity, 2011, 34(2): 237 − 246  doi: 10.1016/j.immuni.2011.01.016

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    3. [3]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    4. [4]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    5. [5]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    6. [6]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    7. [7]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    8. [8]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    11. [11]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    12. [12]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    13. [13]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    14. [14]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    15. [15]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    16. [16]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    17. [17]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    18. [18]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    19. [19]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(0)
  • Abstract views(113)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return