Citation: Yan Peng, Yu-jia Hou, Qiao-qiao Shen, Hui Wang, Gang Li, Guang-su Huang, Jin-rong Wu. Synthesis and Performance of a Double Network Self-healing Elastomer Based on Hydrogen Bonds and Diels-Alder Crosslinks[J]. Acta Polymerica Sinica, ;2020, 51(2): 158-165. doi: 10.11777/j.issn1000-3304.2019.19140 shu

Synthesis and Performance of a Double Network Self-healing Elastomer Based on Hydrogen Bonds and Diels-Alder Crosslinks

  • Corresponding author: Jin-rong Wu, wujinrong@scu.edu.cn
  • Received Date: 31 July 2019
    Revised Date: 23 August 2019

  • Intrinsic self-healing elastomers, which can automatically heal themselves after damage without the addition of other reagents, have recently attracted increasing attention. However, a trade-off commonly exists between high mechanical properties and high self-healing efficiency, which is always the bottle-neck in advancing these high performance self-healing elastomers. To solve this problem, a high performance and high self-healing efficiency elastomer was developed in this work based on hydrogen bonds and Diles-Alder (DA) crosslinks. Firstly, a monomer (HM) functionalized with amido bond and carbamic acid ester for the generation of hydrogen bonds was synthesized by N-butyl isocyanate and N-(2-hydroxyethyl)acrylamide. Next, one-pot free-radical copolymerization of HM, butyl acrylate (BA), and furfuryl methacrylate (FMA) was carried out to afford a linear copolymer, which was only cross-linked with hydrogen bonds. Finally, bismaleimide (BMI) was used to crosslink the linear copolymer through DA reaction. A double network self-healing elastomer with two kinds of crosslinks, i.e. hydrogen bonds and DA bonds, was thus prepared. The heating-up and cooling down FTIR spectroscopy was used to characterize the hydrogen bonds, while the existence of DA bonds was proved by FTIR, DSC, and DMA techniques. When an external force was applied, the hydrogen bonds broke firstly to dissipate energy, which helped to increase the toughness by about 6.2 times, the tensile strength by about 12.3 times, and Young’s modulus of the elastomer by about 26 times. Meanwhile, DA crosslinks endowed the elastomer with certain elasticity and the capability of fast shape recovery. Moreover, thanks to the reversible ability of hydrogen bonds and DA crosslinks, the elastomer exhibited a high self-healing efficiency up to 98%.
  • 加载中
    1. [1]

      Murphy E B, Wudl F. Prog Polym Sci, 2010, 35: 223 − 251  doi: 10.1016/j.progpolymsci.2009.10.006

    2. [2]

      Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Nature, 2008, 451: 977 − 980  doi: 10.1038/nature06669

    3. [3]

      Montarnal D, Tournilhac F, Hidalgo M, Couturier J L, Leibler L. J Am Chem Soc, 2009, 131: 7966 − 7967  doi: 10.1021/ja903080c

    4. [4]

      Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12: 932 − 937  doi: 10.1038/nmat3713

    5. [5]

      van Gemert G M L, Peeters J W, Sontjens S H M, Janssen H M, Bosman A W. Macromol Chem Phys, 2012, 213: 234 − 242  doi: 10.1002/macp.201100559

    6. [6]

      Das A, Sallat A, Boehme F, Suckow M, Basu D, Wiessner S, Stoeckelhuber K W, Voit B, Heinrich G. ACS Appl Mater Interfaces, 2015, 7: 20623 − 20630  doi: 10.1021/acsami.5b05041

    7. [7]

      Wang D, Guo J, Zhang H, Cheng B, Shen H, Zhao N, Xu J. J Mater Chem A, 2015, 3: 12864 − 12872  doi: 10.1039/C5TA01915J

    8. [8]

      Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F L, Fiore G L, Rowan S J, Weder C. Nature, 2011, 472: 334 − 337  doi: 10.1038/nature09963

    9. [9]

      Wang Z, Yang Y, Burtovyy R, Luzinov I, Urban M W. J Mater Chem A, 2014, 2: 15527 − 15534  doi: 10.1039/C4TA02417F

    10. [10]

      Fox J, Wie J J, Greenland B W, Burattini S, Hayes W, Colquhoun H M, Mackay M E, Rowan S J. J Am Chem Soc, 2012, 134: 5362 − 5368  doi: 10.1021/ja300050x

    11. [11]

      Burattini S, Colquhoun H M, Fox J D, Friedmann D, Greenland B W, Harris P J F, Hayes W, Mackay M E, Rowan S J. Chem Commun, 2009, 44: 6717 − 6719

    12. [12]

      Tao Jie(陶杰), Lin Cuiling(林翠玲), Wang Zhaolong(王兆龙), Wei Bin(魏斌), Hua Qixia(华奇侠), Wan Xueting (万雪婷), Qiu Huayu(邱化玉), Yin Shouchun(尹守春). Acta Polymerica Sinica(高分子学报), 2017, (1): 93 − 100  doi: 10.11777/j.issn1000-3304.2017.16244

    13. [13]

      Froidevaux V, Borne M, Laborbe E, Auvergne R, Gandini A, Boutevin B. RSC Adv, 2015, 5: 37742 − 37754  doi: 10.1039/C5RA01185J

    14. [14]

      Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N. Polymer, 2013, 54: 5351 − 5357  doi: 10.1016/j.polymer.2013.07.059

    15. [15]

      Bai N, Simon G P, Saito K. New J Chem, 2015, 39: 3497 − 3506  doi: 10.1039/C5NJ00066A

    16. [16]

      Deng G, Tang C, Li F, Jiang H, Chen Y. Macromolecules, 2010, 43: 1191 − 1194  doi: 10.1021/ma9022197

    17. [17]

      Kim S M, Jeon H, Shin S H, Park S A, Jegal J, Hwang S Y, Oh D X, Park J. Adv Mater, 2018, 30: 1705145  doi: 10.1002/adma.201705145

    18. [18]

      Sastri V R, Tesoro G C. J Appl Polym Sci, 2010, 39: 1439 − 1457

    19. [19]

      Yuan C E, Rong M Z, Zhang M Q, Zhang Z P, Yuan Y C. Chem Mater, 2011, 23: 5076 − 5081  doi: 10.1021/cm202635w

    20. [20]

      Peng Y, Yang Y, Wu Q, Wang S X, Huang G S, Wu J R. Polymer, 2018, 157: 172 − 179  doi: 10.1016/j.polymer.2018.09.038

    21. [21]

      Wu J, Cai L H, Weitz D A. Adv Mater, 2017, 29: 1702616  doi: 10.1002/adma.201702616

    22. [22]

      Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang C, Nie Z. Polym Chem, 2013, 4: 4601 − 4605  doi: 10.1039/c3py00692a

    23. [23]

      Ding Xiaoya(丁晓亚), Wang Yu(王宇), Li Gao(李杲), Xiao Chunsheng(肖春生), Chen Xuesi(陈学思). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 505 − 515  doi: 10.11777/j.issn1000-3304.2019.19015

    24. [24]

      Tian Lirong(田丽蓉), Yang Li(杨莉), Wang Zhanhua(王占华), Xia Hesheng(夏和生). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 527 − 534  doi: 10.11777/j.issn1000-3304.2019.19021

    25. [25]

      Roy N, Buhler E, Lehn J M. Polym Int, 2014, 63: 1400 − 1405  doi: 10.1002/pi.4646

    26. [26]

      Neal J A, Mozhdehi D, Guan Z. J Am Chem Soc, 2015, 137: 4846 − 4850  doi: 10.1021/jacs.5b01601

    27. [27]

      Feng Z, Zuo H, Gao W, Ning N, Tian M, Zhang L. Macromol Rapid Commun, 2018, 39: 1800138  doi: 10.1002/marc.201800138

    28. [28]

      Suematsu K, Kodama K, Ma N, Yuasa M, Kida T, Shimanoe K. RSC Adv, 2016, 6: 5169 − 5176  doi: 10.1039/C5RA20994C

    29. [29]

      Liu Y L, Hsieh C Y. J Polym Sci, Part A: Polym Chem, 2006, 44: 905 − 913  doi: 10.1002/pola.21184

    30. [30]

      Feng L, Yu Z, Bian Y, Lu J, Shi X, Chai C. Polymer, 2017, 124: 48 − 59  doi: 10.1016/j.polymer.2017.07.049

    31. [31]

      Tian Q, Yuan Y C, Rong M Z, Zhang M Q. J Mater Chem, 2009, 19: 1289 − 1296  doi: 10.1039/b811938d

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    3. [3]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    4. [4]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Zhenyu Feng Zhaozhen Cao Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016

    11. [11]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    12. [12]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    15. [15]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    16. [16]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

Metrics
  • PDF Downloads(0)
  • Abstract views(150)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return