Citation: Jing Gao, Wei-qi Wang, Hai-jun Yu. Acid-activatable Polymeric Drug Delivery Systems for Cancer Therapy[J]. Acta Polymerica Sinica, ;2019, 50(11): 1156-1166. doi: 10.11777/j.issn1000-3304.2019.19133 shu

Acid-activatable Polymeric Drug Delivery Systems for Cancer Therapy

  • Corresponding author: Hai-jun Yu, hjyu@simm.ac.cn
  • Received Date: 12 July 2019
    Revised Date: 9 August 2019

  • The polymeric drug delivery systems (DDS) have showed promising potential for improving cancer therapy, which can lengthen the blood circulation and minimize the adverse effect of chemotherapeutics. Despite promising, the therapeutic performance of polymeric-based DDS is affected by a series of physiological barriers, including limited tumor accumulation, restricted tumor penetration, insufficient cellular uptake, and slow drug release inside the tumor cells. It has been well-investigated that there is an acidic microenvironment inside the solid tumors due to the abnormal glucose metabolism of tumor cells. Moreover, the subcellular organelles including endosome and lysosome display much lower acidic pH than that of cytosol. The extracellular and intracellular acidic microenvironments have thus been exploited as both a trigger and target for tumor-targeted drug delivery. In this review article, we summarized our recent advances in developing acid-responsive polymeric DDS by taking the advantage of the acidic microenvironment of tumor tissue and tumor cells. We particularly highlighted the acid-responsive chemical bonds and components employed for constructing the acid-activatable DDS. These acid-activatable nanovectors have been exploited for combating the physiological barriers by surface charge conversion, nanostructure dissociation, and ligand presentation. We also provided a perspective regarding of the challenges and opportunities about clinical translation of the stimuli-activatable DDS.
  • 加载中
    1. [1]

      Maeda H. Adv Drug Deliv Rev, 2015, 91: 3 − 6  doi: 10.1016/j.addr.2015.01.002

    2. [2]

      Maeda H, Nakamura H, Fang J. Adv Drug Deliv Rev, 2013, 65(1): 71 − 79  doi: 10.1016/j.addr.2012.10.002

    3. [3]

      Blanco E, Shen H, Ferrari M. Nat Biotechnol, 2015, 33(9): 941 − 951  doi: 10.1038/nbt.3330

    4. [4]

      Rosenblum D, Joshi N, Tao W, Karp J M, Peer D. Nat Commun, 2018, 9: 1410  doi: 10.1038/s41467-018-03705-y

    5. [5]

      Sriraman S K, Aryasomayajula B, Torchilin V P. Tissue Barriers, 2014, 2: e29528  doi: 10.4161/tisb.29528

    6. [6]

      Sun Q, Zhou Z, Qiu N, Shen Y. Adv Mater, 2017, 29(14): 1606628  doi: 10.1002/adma.201606628

    7. [7]

      Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, Zhou Z, Yu Q, Tang J, Liu X, Gan Z, Mo R, Gu Zhen, Shen Y. Nat Nanotechnol, 2019, 14: 799 − 809  doi: 10.1038/s41565-019-0485-z

    8. [8]

      Feng L, Dong Z, Tao D, Zhang Y, Liu Z. National Sci Rev, 2018, 5(2): 269 − 286  doi: 10.1093/nsr/nwx062

    9. [9]

      Liu J, Wang T, Wang D, Dong A, Li Y, Yu H. Acta Pharmacol, 2016, 38(1): 1 − 8

    10. [10]

      Wang Y, Wang C, Li Y, Huang G, Zhao T, Ma X, Wang Z, Sumer B D, White M A, Gao J. Adv Mater, 2017, 29: 1603794  doi: 10.1002/adma.201603794

    11. [11]

      Dai Y, Xu C, Sun X, Chen X. Chem Soc Rev, 2017, 46(12): 3830 − 3852  doi: 10.1039/C6CS00592F

    12. [12]

      Liberti M V, Locasale J W. Trend Biochem Sci, 2016, 41(3): 211 − 218  doi: 10.1016/j.tibs.2015.12.001

    13. [13]

      Vander Heiden M G, Cantley L C, Thompson C B. Science, 2009, 324: 1029 − 1033  doi: 10.1126/science.1160809

    14. [14]

      Casey J R, Grinstein S, Orlowski J. Nat Rev Mol Cell Biol, 2009, 11(1): 50 − 61

    15. [15]

      Maxfield F R, McGraw T E. Nat Rev Mol Cell Biol, 2004, 5(2): 121 − 132

    16. [16]

      Webb B A, Chimenti M, Jacobson M P, Barber D L. Nat Rev Cancer, 2011, 11(9): 671 − 677  doi: 10.1038/nrc3110

    17. [17]

      de Milito A, Fais S. Future Oncol, 2005, 1(6): 779 − 786  doi: 10.2217/14796694.1.6.779

    18. [18]

      Alizadeh A A, Aranda V, Bardelli A. Nat Med, 2015, 21(8): 846 − 853  doi: 10.1038/nm.3915

    19. [19]

      Ling D, Park W, Park S, Na K, Hyeon T. J. Am Chem Soc, 2014, 136(15): 5647 − 5655  doi: 10.1021/ja4108287

    20. [20]

      Heldin C H, Rubin K, Pietras K, Oatman A. Nat Rev Cancer, 2004, 4(10): 806 − 813  doi: 10.1038/nrc1456

    21. [21]

      Mishra S, Webster P, Davis M E. Eur J Cell Biol, 2004, 83(3): 97 − 111  doi: 10.1078/0171-9335-00363

    22. [22]

      Hama S, Itakura S, Nakai M, Nakayama K, Morimoto S. J Control Release, 2015, 206: 67 − 74  doi: 10.1016/j.jconrel.2015.03.011

    23. [23]

      Komarov I V, Ishchenko A Y, Hovtvianitsa A, Stepanenko V, Kharchenko S, Bond A D, Kirby A J. Molecules, 2019, 24: 572  doi: 10.3390/molecules24030572

    24. [24]

      Li Hongjun(李洪军), Liu Jing(刘晶), Du Jinzhi(杜金志), Wang Jun(王均). Acta Polymerica Sinica(高分子学报), 2019, 50: 567 − 574  doi: 10.11777/j.issn1000-3304.2019.18268

    25. [25]

      Du J, Li H, Wang J. Acc Chem Res, 2018, 51(11): 2848 − 2856  doi: 10.1021/acs.accounts.8b00195

    26. [26]

      Feng B, Zhou F, Hou B, Wang D, Wang T, Fu Y, Ma Y, Yu H, Li Y. Adv Mater, 2018, 30(38): 1803001  doi: 10.1002/adma.201803001

    27. [27]

      Zhou F, Feng B, Yu H, Wang D, Wang T, Ma Y, Wang S, Li Y. Adv Mater, 2019, 31(14): 1805888  doi: 10.1002/adma.201805888

    28. [28]

      Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, Porembka M R, Lea J, Frankel A E, Fu Y, Chen Z, Gao J. Nat Nanotechnol, 2017, 12(7): 648 − 654  doi: 10.1038/nnano.2017.52

    29. [29]

      Li Y, Zhao T, Wang C, Lin Z, Huang G, Sumer B D, Gao J. Nat Commun, 2016, 7: 13214  doi: 10.1038/ncomms13214

    30. [30]

      Ge Z, Liu S. Chem Soc Rev, 2013, 42: 7289 − 7325  doi: 10.1039/c3cs60048c

    31. [31]

      Wang T, Wang D, Liu J, Feng B, Zhou F, Zhang H, Zhou L, Yin Q, Zhang Z, Yu H, Li Y. Nano Lett, 2017, 17(9): 5429 − 5436  doi: 10.1021/acs.nanolett.7b02031

    32. [32]

      Hu J, Zhang G, Ge Z, Liu S. Prog Polym Sci, 2014, 39(6): 1096 − 1143  doi: 10.1016/j.progpolymsci.2013.10.006

    33. [33]

      Zhu J, Zeng X, Qin S, Wan S, Jia H, Zhuo R, Feng J, Zhang X. Biomaterials, 2016, 83: 79 − 92  doi: 10.1016/j.biomaterials.2016.01.003

    34. [34]

      Wang W, Cheng D, Gong F, Miao X, Shuai X. Adv Mater, 2012, 24(1): 115 − 120  doi: 10.1002/adma.201104066

    35. [35]

      Jin E, Zhang B, Sun X, Zhou Z, Ma X, Sun Q, Tang J, Shen Y, Van K E, Murdoch W J, Radosz M. J Am Chem Soc, 2013, 135(2): 933 − 940  doi: 10.1021/ja311180x

    36. [36]

      Yang X, Du X, Liu Y, Zhu Y, Liu Y, Li Y, Wang J. Adv Mater, 2014, 26(6): 931 − 936  doi: 10.1002/adma.201303360

    37. [37]

      Li H, Du J, Du X, Xu C, Sun C, Wang H, Cao Z, Yang X, Zhu Y, Nie S, Wang J. Proc Natl Acad Sci USA, 2016, 113(15): 4164 − 4169  doi: 10.1073/pnas.1522080113

    38. [38]

      Guan X, Guo Z, Lin L, Chen J, Tian H, Chen X. Nano Lett, 2016, 16(11): 6823 − 6831  doi: 10.1021/acs.nanolett.6b02536

    39. [39]

      Yu H, Xu Z, Wang D, Chen X, Zhang Z, Yin Q, Li Y. Polym Chem, 2013, 4: 5052 − 5055  doi: 10.1039/c3py00849e

    40. [40]

      Yu H, Xu Z, Chen X, Xu L, Yin Q, Zhang Z, Li Y. Macromol Biosci, 2014, 14(1): 100 − 109  doi: 10.1002/mabi.201300282

    41. [41]

      Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman D A, Sumer B D, Gao J. J Control Release, 2011, 156(3): 276 − 280  doi: 10.1016/j.jconrel.2011.08.019

    42. [42]

      He X, Yu H, Bao X, Cao H, Yin Q, Zhang Z, Li Y. Adv Healthc Mater, 2016, 5(4): 439 − 448  doi: 10.1002/adhm.201500626

    43. [43]

      He X, Bao X, Cao H, Zhang Z, Yin Q, Gu W, Chen L, Yu H, Li Y. Adv Funct Mater, 2015, 25(19): 2831 − 2839  doi: 10.1002/adfm.201500772

    44. [44]

      Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y. ACS Nano, 2013, 7(7): 5858 − 5869  doi: 10.1021/nn4010796

    45. [45]

      Feng Q, Liu J, Li X, Chen Q, Sun J, Shi X, Ding B Yu H, Li Y, Jiang X. Small, 2017, 13: 1603109  doi: 10.1002/smll.201603109

    46. [46]

      Yu H, Cui Z, Yu P, Guo C, Feng B, Jiang T, Wang S, Yin Q, Zhong D, Yang X, Zhang Z, Li Y. Adv Funct Mater, 2015, 25(17): 2489 − 2500  doi: 10.1002/adfm.201404484

    47. [47]

      Wang T, Wang D, Yu H, Wang M, Liu J, Feng B, Zhou F, Yin Q, Zhang Z, Huang Y, Li Y. ACS Nano, 2016, 10(3): 3496 − 3508  doi: 10.1021/acsnano.5b07706

    48. [48]

      Zeng L, Zou L, Yu H, He X, Cao H, Zhang Z, Yin Q, Zhang P, Gu W, Chen L, Li Y. Adv Funct Mater, 2016, 26(23): 4201 − 4212  doi: 10.1002/adfm.201600642

    49. [49]

      Wang W, Saeed M, Zhou Y, Yang L, Wang D, Yu H J. Genet, 2019, 21(7): e3092  doi: 10.1002/jgm.3092

    50. [50]

      Lin Lin(林琳), Guo Zhaopei(郭兆培), Chen Jie(陈杰), Tian Huayu(田华雨), Chen Xuesi(陈学思). Acta Polymerica Sinica(高分子学报), 2017, (2): 321 − 328  doi: 10.11777/j.issn1000-3304.2017.16277

    51. [51]

      Sun Run(孙瑞), Qiu Nasha(邱娜莎), Shen Youqing(申有青). Acta Polymerica Sinica(高分子学报), 2019, (6): 588 − 601  doi: 10.11777/j.issn1000-3304.2019.19005

    52. [52]

      Wang Longhai(王龙海), Zhang Ze(张泽), Zeng Tianyou(曾天佑), Xia Lei(夏磊), Nie Xuan(聂旋), Chen Guang(陈光), You Yezi(尤业字). Acta Polymerica Sinica(高分子学报), 2017, (12): 1883 − 1904  doi: 10.11777/j.issn1000-3304.2017.17240

    53. [53]

      Yu H, Zou Y, Jiang L, Yin Q, He X, Chen L, Zhang Z, Gu W, Li Y. Biomaterials, 2013, 34(11): 2738 − 2747  doi: 10.1016/j.biomaterials.2012.12.042

    54. [54]

      Yu H, Guo C, Feng B, Liu J, Chen X, Wang D, Teng L, Li Y, Yin Q, Zhang Z, Li Y. Theranostics, 2016, 6(1): 14 − 27  doi: 10.7150/thno.13515

    55. [55]

      Yu H, Zou Y, Wang Y, Huang X, Huang G, Sumer B D, Boothman D A, Gao J. ACS Nano, 2011, 5: 9246 − 9255  doi: 10.1021/nn203503h

    56. [56]

      Qin Yibo(秦怡博), Yang Pengxiang(杨鹏翔), Shi Shengbin(时圣彬), Sun Hongfan(孙洪范), Zhang Chuangnian(张闯年), Kong Deling(孔德领). Acta Polymerica Sinica(高分子学报), 2018, (7): 909 − 916  doi: 10.11777/j.issn1000-3304.2018.18039

    57. [57]

      Yuan Y, Zhang C J, Liu B. Angew Chem Int Ed, 2015, 54(39): 11419 − 11423  doi: 10.1002/anie.201503640

    58. [58]

      Dolmans D E, Fukumura D, Jain R K. Nat Rev Cancer, 2003, 3(5): 380 − 387  doi: 10.1038/nrc1071

    59. [59]

      Wang D, Wang T, Liu J, Yu H, Jiao S, Feng B, Zhou F, Fu Y, Yin Q, Zhang P, Zhang Z, Zhou Z, Li Y. Nano Lett, 2016, 16(9): 5503 − 5513  doi: 10.1021/acs.nanolett.6b01994

    60. [60]

      Xu X, Wu J, Liu Y, Yu M, Zhao L, Zhu X, Bhasin S, Li Q, Ha E, Shi J, Farokhzad O C. Angew Chem Int Ed, 2016, 55(25): 7091 − 7094  doi: 10.1002/anie.201601273

  • 加载中
    1. [1]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    3. [3]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    6. [6]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    7. [7]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    8. [8]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    11. [11]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    14. [14]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    15. [15]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    16. [16]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    19. [19]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    20. [20]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

Metrics
  • PDF Downloads(0)
  • Abstract views(189)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return