Citation: Yan Wang, Wen-jie Wang, Yi-qi Xia, Hui-shu Li. Computer Simulation of a Single Polymer Chain Translocating through a Pore in an Asymmetric Particle Bath[J]. Acta Polymerica Sinica, ;2019, 50(12): 1331-1337. doi: 10.11777/j.issn1000-3304.2019.19107 shu

Computer Simulation of a Single Polymer Chain Translocating through a Pore in an Asymmetric Particle Bath

  • Corresponding author: Hui-shu Li, hsli@suda.edu.cn
  • Received Date: 22 May 2019
    Revised Date: 4 July 2019

  • Polymer translocation through a nanopore is of ubiquitous importance in many biological processes such as DNA and mRNA translocation through nuclear pores, protein transport across membrane channels. In real systems, polymer translocation process usually involves complex environments. One typical example is that there present different environments inside and outside the nanopore. It is interesting to study polymer translocation in an asymmetric environment. Here, Langevin dynamics simulation is performed to study polymer translocation through nanopore in an asymmetry bath of active particles and passive particles. The polymer is modeled by a bead-spring chain and the active particle is modeled by active Brownian particles with inherent orientation. We find that with the increase of the particle activity, the translocation probability of polymer chain toward active bath increases quickly, and finally reaches a saturation value. This may be because active particles exert a drag force on the polymer chain. Additionally, as the bath activity increases, the mean translocation time of polymer chain decreases fast and then increases slightly. The physical mechanism of the non-monotonic change is that the increase of the bath activity will induce the increase of tension in polymer chain, resulting in a drag force toward active region. However, when the bath activity is large enough, crystalline layers of active particles are formed near the boundary, which inhibits the motion of active particles and increases translocation time of the chain. Furthermore, it is found that the profile of translocation time at small active force can be fitted by log-normal distribution. Moreover, we also pay attention to the length effect of polymer chain on translocation mechanism at moderate active forces. The longer polymer chain and the higher activity of particles can lead to a larger value of drag force on the polymer chain. The results may provide an insight into the translocation behavior of polymer chain, and help understand the non-equilibrium processes in living organisms.
  • 加载中
    1. [1]

      Izaurralde E, Kutay U, vonKobbe C, Mattaj I W, Gorlich D. Embo J, 1997, 16(21): 6535 − 6547  doi: 10.1093/emboj/16.21.6535

    2. [2]

      Ohno M, Fornerod M, Mattaj I W. Cell, 1998, 92(3): 327 − 336  doi: 10.1016/S0092-8674(00)80926-5

    3. [3]

      Wang G, Chen H W, Oktay Y, Zhang J, Allen E L, Smith G M, Fan K C, Hong J S, French S W, McCaffery J M, Lightowlers R N, Morse H C, Koehler C M, Teitell M A. Cell, 2010, 142(3): 456 − 467  doi: 10.1016/j.cell.2010.06.035

    4. [4]

      Talaga D S, Li J L. J Am Chem Soc, 2009, 131(26): 9287 − 9297  doi: 10.1021/ja901088b

    5. [5]

      Sung W, Park P J. Phys Rev Lett, 1996, 77(4): 783 − 786  doi: 10.1103/PhysRevLett.77.783

    6. [6]

      Gu L Q, Braha O, Conlan S, Cheley S, Bayley H. Nature, 1999, 398(6729): 686 − 690  doi: 10.1038/19491

    7. [7]

      Lei Z. Bioelectrochem Bioenerg, 1994, 34(2): 207 − 208

    8. [8]

      Kasianowicz J J, Brandin E, Branton D, Deamer D W. P Natl Acad Sci USA, 1996, 93(24): 13770 − 13773  doi: 10.1073/pnas.93.24.13770

    9. [9]

      Han J, Turner S W, Craighead H G. Phys Rev Lett, 1999, 83(8): 1688 − 1691  doi: 10.1103/PhysRevLett.83.1688

    10. [10]

      Turner S W P, Cabodi M, Craighead H G. Phys Rev Lett, 2002, 88(12): 128103 − 128107  doi: 10.1103/PhysRevLett.88.128103

    11. [11]

      Meller A, Nivon L, Brandin E, Golovchenko J, Branton D. P Natl Acad Sci USA, 2000, 97(3): 1079 − 1084  doi: 10.1073/pnas.97.3.1079

    12. [12]

      Hanss B, Leal-Pinto E, Bruggeman L A, Copeland T D, Klotman P E. P Natl Acad Sci USA, 1998, 95(4): 1921 − 1926  doi: 10.1073/pnas.95.4.1921

    13. [13]

      Tseng Y L, Liu J J, Hong R L. Mol Pharmacol, 2002, 62(4): 864 − 872  doi: 10.1124/mol.62.4.864

    14. [14]

      Qian Hujun(钱虎军), Jiao Guisheng(焦贵省), Li Yanchun(李延春), Lv Zhongyuan(吕中元). Acta Polymerica Sinica(高分子学报), 2016, (8): 1011 − 1020  doi: 10.11777/j.issn1000-3304.2016.16067

    15. [15]

      Luo M B, Wang C. Phys Chem Chem Phys, 2013, 15(9): 3212 − 3217  doi: 10.1039/c2cp43925e

    16. [16]

      Li X J, Pivkin I V, Liang H J. Polymer, 2013, 54(16): 4309 − 4317  doi: 10.1016/j.polymer.2013.06.022

    17. [17]

      Wanunu M. Phys Life Rev, 2012, 9(2): 125 − 158  doi: 10.1016/j.plrev.2012.05.010

    18. [18]

      Li Lianwei(李连伟), Jin Fan(金帆), He Weidong(何卫东), Wu Gi(吴奇). Acta Polymerica Sinica(高分子学报), 2014, (1): 1 − 21

    19. [19]

      Liu Jun(刘军), Shen Jianxiang(沈建祥), Cao Dapeng(曹达鹏), Zhang Liqun(张立群). Acta Polymerica Sinica(高分子学报), 2016, (8): 1048 − 1061  doi: 10.11777/j.issn1000-3304.2016.16105

    20. [20]

      Luo K F, Ala-Nissila T, Ying S C, Bhattacharya A. Phys Rev Lett, 2008, 100(5): 058101  doi: 10.1103/PhysRevLett.100.058101

    21. [21]

      Yu W C, Luo K F. J Am Chem Soc, 2011, 133(34): 13565 − 13570  doi: 10.1021/ja204892z

    22. [22]

      Slonkina E, Kolomeisky A B. J Chem Phys, 2003, 118(15): 7112 − 7118  doi: 10.1063/1.1560932

    23. [23]

      Cao W P, Ren Q B, Luo M B. Phys Rev E, 2015, 92(1): 012603  doi: 10.1103/PhysRevE.92.012603

    24. [24]

      Huang Lihan(黄子涵), Dong Bojun(董伯骏), Chen Pengyu(陈鹏宇), Yang Ye(杨烨), Zhu Guolong(朱国龙), Yan Litang(燕立唐). Acta Polymerica Sinica(高分子学报), 2016, (8): 979 − 991  doi: 10.11777/j.issn1000-3304.2016.16055

    25. [25]

      Man Xingkun(满兴坤), Zhang Jie(张洁). Acta Polymerica Sinica(高分子学报), 2016, (8): 1042 − 1047  doi: 10.11777/j.issn1000-3304.2016.16095

    26. [26]

      Luo K F, Ala-Nissila T, Ying S C, Bhattacharya A. Phys Rev E, 2008, 78(6): 061911  doi: 10.1103/PhysRevE.78.061911

    27. [27]

      Luo K F, Ollila S T T, Huopaniemi I, Ala-Nissila T, Pomorski P, Karttunen M, Ying S C, Bhattacharya A. Phys Rev E, 2008, 78(5): 050901  doi: 10.1103/PhysRevE.78.050901

    28. [28]

      Wang Y Q, Li C G, Pielak G J. J Am Chem Soc, 2010, 132(27): 9392 − 9397  doi: 10.1021/ja102296k

    29. [29]

      Kaiser A, Babel S, ten Hagen B, von Ferber C, Lowen H. J Chem Phys, 2015, 142(12): 124905 − 124914  doi: 10.1063/1.4916134

    30. [30]

      Kaiser A, Lowen H. J Chem Phys, 2014, 141(4): 044903  doi: 10.1063/1.4891095

    31. [31]

      Li H S, Tian W D, Chen K. J Chem Phys, 2015, 143(22): 224903

    32. [32]

      Xia Y Q, Tian W D, Chen K, Ma Y Q. Phys Chem Chem Phys, 2019, 21(8): 4487 − 4493  doi: 10.1039/C8CP05976D

    33. [33]

      Harder J, Valeriani C, Cacciuto A. Phys Rev E, 2014, 90(6): 062312 − 062322

    34. [34]

      Pu M F, Jiang H J, Hou Z H. J Chem Phys, 2016, 145: 174902 − 174910  doi: 10.1063/1.4966591

    35. [35]

      Hu J, Yang M, Gompper G, Winkler R G. Soft Matter, 2015, 11(40): 7867 − 7876  doi: 10.1039/C5SM01678A

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    3. [3]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    4. [4]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    6. [6]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    7. [7]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    8. [8]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    9. [9]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    10. [10]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    11. [11]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    12. [12]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    13. [13]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    14. [14]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    15. [15]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    16. [16]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    17. [17]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(0)
  • Abstract views(124)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return