Citation: Jian-jun Zhang, Jin-feng Yang, Han Wu, Min Zhang, Ting-ting Liu, Jin-ning Zhang, Shan-mu Dong, Guang-lei Cui. Research Progress of in situ Generated Polymer Electrolyte for Rechargeable Batteries[J]. Acta Polymerica Sinica, ;2019, 50(9): 890-914. doi: 10.11777/j.issn1000-3304.2019.19097 shu

Research Progress of in situ Generated Polymer Electrolyte for Rechargeable Batteries

  • Corresponding author: Guang-lei Cui, cuigl@qibebt.ac.cn
  • Received Date: 9 May 2019
    Revised Date: 8 June 2019

  • Rechargeable batteries, which are among the most promising energy storage devices, have become a research hotspot related to energy-storage and energy-convert systems. While the rechargeable batteries based on liquid electrolytes commonly possess serious safety risks such as electrolyte leakage, volatilization, combustion, and explosion, polymer electrolytes display great potentials in ameliorating and addressing these problems. Conventional polymer electrolytes are generally prepared by the solution casting method, which is difficult to implement in actual production owing to its complicated operation and harsh conditions. In addition, the poor electrolyte/electrode interfacial contact in solid-state lithium batteries is also a common issue, mainly originating from the ex situ assembly technique of solid-state electrolyte. These drawbacks hinder their large-scale promotion and application. In this context have emerged the in situ generated polymer electrolytes, which aim at solving the above mentioned problems effectively. The general process of in situ preparation of the polymer electrolytes is as follows: a precursor solution consisting of monomers, lithium salts, and initiators is injected into the battery to fully wet the electrode channels and gaps, and the monomers are then polymerized in situ under certain external conditions to afford a gel/solid polymer rechargeable battery in one step. Compared to the traditional routes to polymer electrolytes, such in situ polymerization simplifies the preparation process, facilitates favorable solid electrolyte interface, and enables the electrode and electrolyte to form an integrated structure for better interfacial contact. These advantages are beneficial to an improved performance of rechargeable batteries and endow the technique with a promising application prospect. For more efficient development, it is an urgent task to review the existing process routes, reaction principles, types of polymer electrolytes, and the practical applications of in situ generated polymer electrolytes in rechargeable batteries (such as lithium, sodium, magnesium, etc.). Herein, we summarize the research progress of in situ polymerization in significantly stabilizing the electrode/electrolyte interface and inhibiting the diffusion of intermediates. Further, we discuss the challenges and development treads of in situ generated polymer electrolytes, including the prospects of quasi-solid polymer electrolytes. We believe this review paper will serve as a valuable reference and theoretical guidance for researchers engaged in polymer electrolytes.
  • 加载中
    1. [1]

      Wu Z, Liu K, Lv C, Zhong S, Wang Q, Liu T, Liu X, Yin Y, Hu Y, Wei D. Small, 2018, 14(22): 1800414  doi: 10.1002/smll.v14.22

    2. [2]

      Abe H, Zaghib K, Tatsumi K, Higuchi S. J Power Sources, 1995, 54(2): 236 − 239  doi: 10.1016/0378-7753(94)02075-E

    3. [3]

      Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, Cho J. Angew Chem Int Ed, 2015, 54(15): 4440 − 4457  doi: 10.1002/anie.201409262

    4. [4]

      Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F. Appl Energy, 2017, 195: 586 − 599  doi: 10.1016/j.apenergy.2017.03.074

    5. [5]

      Li J, Du Z, Ruther R E, An S J, David L A, Hays K, Wood M, Phillip N D, Sheng Y, Mao C. JOM, 2017, 69(9): 1484 − 1496  doi: 10.1007/s11837-017-2404-9

    6. [6]

      Nowak S, Winter M. J Electrochem Soc, 2015, 162(14): A2500 − A2508  doi: 10.1149/2.0121514jes

    7. [7]

      Schroeder D, Hubaud A, Vaughey J. Mater Res Bull, 2014, 49: 614 − 617  doi: 10.1016/j.materresbull.2013.10.006

    8. [8]

      Hayamizu K, Akiba E. Electrochemistry, 2003, 71(12): 1052 − 1054

    9. [9]

      Ghimire P, Nakamura H, Yoshio M, Yoshitake H, Abe K. Electrochemistry, 2003, 71(12): 1084 − 1086

    10. [10]

      Gao J, Zhao Y S, Shi S Q, Li H. Chin Phys B, 2015, 25(1): 018211

    11. [11]

      Zheng Z S, Zhang Z T, Tang Z, Shen W. Prog Chem, 2003, 15(2): 101 − 106

    12. [12]

      Xu R, Zhang S, Wang X, Xia Y, Xia X, Wu J, Gu C, Tu J. Chem Eur J, 2018, 24(23): 6007 − 6018  doi: 10.1002/chem.v24.23

    13. [13]

      Ou Q, Zhang Y, Wang Z, Yuwono J A, Wang R, Dai Z, Li W, Zheng C, Xu Z Q, Qi X. Adv Mater, 2018, 30(15): 1705792  doi: 10.1002/adma.v30.15

    14. [14]

      Ramakumar S, Deviannapoorani C, Dhivya L, Shankar L S, Murugan R. Prog Mater Sci, 2017, 88: 325 − 411  doi: 10.1016/j.pmatsci.2017.04.007

    15. [15]

      Qiu Z, Zhang Y, Xia S, Dong P. Acta Chim Sin, 2015, 73: 992 − 1001

    16. [16]

      Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W. Adv Mater, 2019, 31(11): 1806082  doi: 10.1002/adma.1806082

    17. [17]

      Zhang W, Nie J, Li F, Wang Z L, Sun C. Nano Energy, 2018, 45: 413 − 419  doi: 10.1016/j.nanoen.2018.01.028

    18. [18]

      Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G. Small, 2018, 14(36): 1800821  doi: 10.1002/smll.v14.36

    19. [19]

      Dai J, Yang C, Wang C, Pastel G, Hu L. Adv Mater, 2018, 30(48): 1802068  doi: 10.1002/adma.v30.48

    20. [20]

      Yu R, Bao J J, Chen T T, Zou B K, Wen Z Y, Guo X X, Chen C H. Solid State Ionics, 2017, 309: 15 − 21  doi: 10.1016/j.ssi.2017.06.013

    21. [21]

      Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J. Nano Energy, 2017, 33: 363 − 386  doi: 10.1016/j.nanoen.2017.01.028

    22. [22]

      Choi H, Kim H W, Ki J K, Lim Y J, Kim Y, Ahn J H. Nano Research, 2017, 10(9): 3092 − 3102  doi: 10.1007/s12274-017-1526-2

    23. [23]

      Chen R J, Zhang Y B, Liu T, Xu B, Shen Y, Li L, Lin Y H, Nan C W. Solid State Ionics, 2017, 310: 44 − 49  doi: 10.1016/j.ssi.2017.07.026

    24. [24]

      Rolland J, Brassinne J, Bourgeois J P, Poggi E, Vlad A, Gohy J F. J Mater Chem A, 2014, 2(30): 11839 − 11846  doi: 10.1039/C4TA02327G

    25. [25]

      Gerbaldi C, Nair J R, Kulandainathan M A, Kumar R S, Ferrara C, Mustarelli P, Stephan A M. J Mater Chem A, 2014, 2(26): 9948 − 9954  doi: 10.1039/C4TA01856G

    26. [26]

      Xu X, Hou G, Nie X, Ai Q, Liu Y, Feng J, Zhang L, Si P, Guo S, Ci L. J Power Sources, 2018, 400: 212 − 217  doi: 10.1016/j.jpowsour.2018.08.016

    27. [27]

      Liu X, Li X, Li H, Wu H B. Chem Eur J, 2018, 24(69): 18293 − 18306  doi: 10.1002/chem.v24.69

    28. [28]

      Villaluenga I, Wujcik K H, Tong W, Devaux D, Wong D H, DeSimone J M, Balsara N P. Proc Natl Acad Sci USA, 2016, 113(1): 52 − 57  doi: 10.1073/pnas.1520394112

    29. [29]

      Croce F, Sacchetti S, Scrosati B. J Power Sources, 2006, 162(1): 685 − 689  doi: 10.1016/j.jpowsour.2006.07.038

    30. [30]

      Xi J, Huang X, Tang X. Chin Sci Bull, 2004, 49(20): 2129 − 2133  doi: 10.1007/BF03185777

    31. [31]

      Zhang R, Chen Y, Montazami R. Materials, 2015, 8(5): 2735 − 2748  doi: 10.3390/ma8052735

    32. [32]

      Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem Commun, 2012, 17: 18 − 21  doi: 10.1016/j.elecom.2012.01.008

    33. [33]

      Kim H S, Periasamy P, Moon S I. J Power Sources, 2005, 141(2): 293 − 297  doi: 10.1016/j.jpowsour.2004.08.007

    34. [34]

      Appetecchi G, Romagnoli P, Scrosati B. Electrochem Commun, 2001, 3(6): 281 − 284  doi: 10.1016/S1388-2481(01)00137-0

    35. [35]

      Kim D W, Oh B, Park J H, Sun Y K. Solid State Ionics, 2000, 138(1-2): 41 − 49  doi: 10.1016/S0167-2738(00)00763-3

    36. [36]

      Song J, Wang Y, Wan C C. J Power Sources, 1999, 77(2): 183 − 197  doi: 10.1016/S0378-7753(98)00193-1

    37. [37]

      Kim D W, Oh B K, Choi Y M. Solid State Ionics, 1999, 123(1-4): 243 − 249  doi: 10.1016/S0167-2738(99)00099-5

    38. [38]

      Cho Y G, Hwang C, Cheong D S, Kim Y S, Song H K. Adv Mater, 2019, 31(20): 1804909  doi: 10.1002/adma.v31.20

    39. [39]

      Fan Huanhuan(范欢欢), Zhou Dong(周栋), Fan Lizhen(范丽珍), Shi Qiao(石桥). J Chin Ceram Soc(硅酸盐学报), 2013, 41(2): 134 − 139  doi: 10.7521/j.issn.0454-5648.2013.02.02

    40. [40]

      Chai J, Liu Z, Ma J, Wang J, Liu X, Liu H, Zhang J, Cui G, Chen L. Adv Sci, 2017, 4(2): 1600377  doi: 10.1002/advs.201600377

    41. [41]

      Ju J, Wang Y, Chen B, Ma J, Dong S, Chai J, Qu H, Cui L, Wu X, Cui G. ACS Appl Mater Interfaces, 2018, 10(16): 13588 − 13597  doi: 10.1021/acsami.8b02240

    42. [42]

      Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. ACS Appl Mater Interfaces, 2017, 9(21): 17897 − 17905  doi: 10.1021/acsami.7b02844

    43. [43]

      He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G. Electrochim Acta, 2017, 225: 151 − 159  doi: 10.1016/j.electacta.2016.12.113

    44. [44]

      Qin B, Liu Z, Zheng J, Hu P, Ding G, Zhang C, Zhao J, Kong D, Cui G. J Mater Chem A, 2015, 3(15): 7773 − 7779  doi: 10.1039/C5TA00216H

    45. [45]

      Susan M A B H, Kaneko T, Noda A, Watanabe M. J Mater Chem A, 2005, 127(13): 4976 − 4983

    46. [46]

      Zhou Y, Xie S, Chen C. J Mater Sci, 2006, 41(22): 7492 − 7497  doi: 10.1007/s10853-006-0803-3

    47. [47]

      Ma Y, Ma J, Chai J, Liu Z, Ding G, Xu G, Liu H, Chen B, Zhou X, Cui G. ACS Appl Mater Interfaces, 2017, 9(47): 41462 − 41472  doi: 10.1021/acsami.7b11342

    48. [48]

      Zheng J, Zhao Y, Feng X, Chen W, Zhao Y. J Mater Chem A, 2018, 6(15): 6559 − 6564  doi: 10.1039/C8TA00530C

    49. [49]

      Zheng J, Li X, Yu Y, Zhen X, Song Y, Feng X, Zhao Y. J Solid State Electrochem, 2014, 18(7): 2013 − 2018  doi: 10.1007/s10008-014-2438-7

    50. [50]

      Niu C, Zhang M, Chen G, Cao B, Shi J, Du J, Chen Y. Electrochim Acta, 2018, 283: 349 − 356  doi: 10.1016/j.electacta.2018.06.169

    51. [51]

      Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater, 2018, 10: 85 − 91  doi: 10.1016/j.ensm.2017.06.017

    52. [52]

      Fan W, Li N W, Zhang X, Zhao S, Cao R, Yin Y, Xing Y, Wang J, Guo Y G, Li C. Adv Sci, 2018, 5(9): 1800559  doi: 10.1002/advs.201800559

    53. [53]

      Liu M, Jiang H, Ren Y, Zhou D, Kang F, Zhao T. Electrochim Acta, 2016, 213: 871 − 878  doi: 10.1016/j.electacta.2016.08.015

    54. [54]

      Liu M, Zhou D, He Y B, Fu Y, Qin X, Miao C, Du H, Li B, Yang Q H, Lin Z. Nano Energy, 2016, 22: 278 − 289  doi: 10.1016/j.nanoen.2016.02.008

    55. [55]

      Bok T, Cho S J, Choi S, Choi K H, Park H, Lee S Y, Park S. RSC Adv, 2016, 6(9): 6960 − 6966  doi: 10.1039/C5RA24256H

    56. [56]

      Zhou D, Liu R, Zhang J, Qi X, He Y B, Li B, Yang Q H, Hu Y S, Kang F. Nano Energy, 2017, 33: 45 − 54  doi: 10.1016/j.nanoen.2017.01.027

    57. [57]

      Zhou D, He Y B, Cai Q, Qin X, Li B, Du H, Yang Q H, Kang F. J Mater Chem A, 2014, 2(47): 20059 − 20066  doi: 10.1039/C4TA04504A

    58. [58]

      Hwang S S, Cho C G, Kim H. Electrochem Commun, 2010, 12(7): 916 − 919  doi: 10.1016/j.elecom.2010.04.020

    59. [59]

      Zhang J, Wen H, Yue L, Chai J, Ma J, Hu P, Ding G, Wang Q, Liu Z, Cui G. Small, 2017, 13(2): 1601530  doi: 10.1002/smll.v13.2

    60. [60]

      Cui Y, Liang X, Chai J, Cui Z, Wang Q, He W, Liu X, Liu Z, Cui G, Feng J. Adv Sci, 2017, 4(11): 1700174  doi: 10.1002/advs.201700174

    61. [61]

      Liu F Q, Wang W P, Yin Y X, Zhang S F, Shi J L, Wang L, Zhang X D, Zheng Y, Zhou J J, Li L. Sci Adv, 2018, 4(10): eaat5383  doi: 10.1126/sciadv.aat5383

    62. [62]

      Huang S, Cui Z, Qiao L, Xu G, Zhang J, Tang K, Liu X, Wang Q, Zhou X, Zhang B. Electrochim Acta, 2019, 299: 820 − 827  doi: 10.1016/j.electacta.2019.01.039

    63. [63]

      Du A, Zhang H, Zhang Z, Zhao J, Cui Z, Zhao Y, Dong S, Wang L, Zhou X, Cui G. Adv Mater, 2019, 31(11): 1805930  doi: 10.1002/adma.1805930

    64. [64]

      Guan H Y, Lian F, Xi K, Ren Y, Sun J L, Kumar R V. J Power Sources, 2014, 245: 95 − 100  doi: 10.1016/j.jpowsour.2013.06.120

    65. [65]

      Cui Y, Chai J, Du H, Duan Y, Xie G, Liu Z, Cui G. ACS Appl Mater Interfaces, 2017, 9(10): 8737 − 8741  doi: 10.1021/acsami.6b16218

    66. [66]

      Lei X, Liu X, Ma W, Cao Z, Wang Y, Ding Y. Angew Chem Inter Ed, 2018, 57(49): 16131 − 16135  doi: 10.1002/anie.201810882

    67. [67]

      Kim J K, Scheers J, Park T J, Kim Y. ChemSusChem, 2015, 8(4): 636 − 641  doi: 10.1002/cssc.v8.4

    68. [68]

      Meng Yabin(孟亚斌), Yang Yajiang(杨亚江). Acta Chimica Sinica(化学学报), 2004, 62: 1509 − 1513

    69. [69]

      Ito S, Unemoto A, Ogawa H, Tomai T, Honma I. J Power Sources, 2012, 208: 271 − 275  doi: 10.1016/j.jpowsour.2012.02.049

    70. [70]

      Lee Y W, Shin W K, Kim D W. Solid State Ionics, 2014, 255: 6 − 12  doi: 10.1016/j.ssi.2013.11.010

    71. [71]

      Zhou Y, Xie S, Ge X, Chen C, Amine K. J Appl Electrochem, 2004, 34(11): 1119 − 1125  doi: 10.1007/s10800-004-2726-5

    72. [72]

      Wang Y, Qiu J, Peng J, Li J, Zhai M. J Mater Chem A, 2017, 5(24): 12393 − 12399  doi: 10.1039/C7TA02291C

    73. [73]

      Kong L, Zhan H, Li Y, Zhou Y. Electrochem Commun, 2007, 9(10): 2557 − 2563  doi: 10.1016/j.elecom.2007.08.001

    74. [74]

      Kong L, Zhan H, Li Y, Zhou Y. Electrochim Acta, 2008, 53(16): 5373 − 5378  doi: 10.1016/j.electacta.2008.02.098

    75. [75]

      Hu Z, Zhang S, Dong S, Li Q, Cui G, Chen L. Chem Mater, 2018, 30(12): 4039 − 4047  doi: 10.1021/acs.chemmater.8b00722

    76. [76]

      Chai J, Chen B, Xian F, Wang P, Du H, Zhang J, Liu Z, Zhang H, Dong S, Zhou X. Small, 2018, 14(37): 1802244  doi: 10.1002/smll.v14.37

    77. [77]

      Liu X, Ding G, Zhou X, Li S, He W, Chai J, Pang C, Liu Z, Cui G. J Mater Chem A, 2017, 5(22): 11124 − 11130  doi: 10.1039/C7TA02423A

    78. [78]

      Qiao L, Cui Z, Chen B, Xu G, Zhang Z, Ma J, Du H, Liu X, Huang S, Tang K. Chem Sci, 2018, 9(14): 3451 − 3458  doi: 10.1039/C8SC00041G

    79. [79]

      Jiang J, Gao D, Li Z, Su G. React Funct Polym, 2006, 66(10): 1141 − 1148  doi: 10.1016/j.reactfunctpolym.2006.02.004

    80. [80]

      Yi Q, Zhang W, Li S, Li X, Sun C. ACS Appl Mater Interfaces, 2018, 10(41): 35039 − 35046  doi: 10.1021/acsami.8b09991

    81. [81]

      Zhou D, He Y B, Liu R, Liu M, Du H, Li B, Cai Q, Yang Q H, Kang F. Adv Energy Mater, 2015, 5(15): 1500353  doi: 10.1002/aenm.201500353

    82. [82]

      Xu G, Kushima A, Yuan J, Dou H, Xue W, Zhang X, Yan X, Li J. Energy Environ Sci, 2017, 10(12): 2544 − 2551  doi: 10.1039/C7EE01898C

    83. [83]

      Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat Energy, 2019, 4: 365 − 373

    84. [84]

      Hu P, Duan Y, Hu D, Qin B, Zhang J, Wang Q, Liu Z, Cui G, Chen L. ACS Appl Mater Interfaces, 2015, 7(8): 4720 − 4727  doi: 10.1021/am5083683

    85. [85]

      Chai J, Zhang J, Hu P, Ma J, Du H, Yue L, Zhao J, Wen H, Liu Z, Cui G. J Mater Chem A, 2016, 4(14): 5191 − 5197  doi: 10.1039/C6TA00828C

    86. [86]

      Hou Zhongke(候仲轲), Chen Ligong(陈立功), Xue Fuhua(薛福华), Song Jian(宋健). Chemistry(化学通报), 2005, (9): 645 − 649

    87. [87]

      Kong Lingbo(孔令波), Zhan Hui(詹晖), Li Yajuan(李亚娟), Zhou Yunhong(周运鸿). Acta Chimica Sinica(化学学报), 2008, 66: 621 − 626

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    6. [6]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    9. [9]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    12. [12]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    13. [13]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    14. [14]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(0)
  • Abstract views(169)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return