Citation: Hai-qiang Li, Jing-yi Wang, Li Wu, Wei Liu, Rui-hua Cheng, Bo-ping Liu. Ring-opening Polymerization of Lactide by Bifunctional Organocatalyst at Ambient Conditions[J]. Acta Polymerica Sinica, ;2019, 50(12): 1290-1297. doi: 10.11777/j.issn1000-3304.2019.19080 shu

Ring-opening Polymerization of Lactide by Bifunctional Organocatalyst at Ambient Conditions

  • Corresponding author: Rui-hua Cheng, rhcheng@ecust.edu.cn
  • Received Date: 17 April 2019
    Revised Date: 15 May 2019
    Available Online: 6 June 2019

  • Ring-opening polymerization of lactide (LA) is one of the most important techniques to synthesize poly(lactic acid) (PLA). In this work, a series of organocatalysts have been prepared for both solution polymerization and bulk polymerization of LA at ambient conditions. Derived from the facile reactions between phthalimide and quaternaryammonium salt, these catalysts are inexpensive and stable in air. Tetraethylammonium 2-aminobenzoate (TEACB) (catalyst a ) was first applied to polymerize LLA in toluene solvent, and a conversion of 42.7% was achieved after the reaction proceeded at 25 °C for 1 h. Orthogonal experiments suggested that the optimum condition was reaction temperature of 75 °C, reaction time of 4 h, and the molar ratio of lactide:catalyst a :alkoxide equal to 200:10:1, which afforded PLA product with molecular weight of 8.03 kg·mol–1, polydispersity index (PDI) of 1.53, and a high conversion of 88.5%. Next, bulk polymerization of LLA was carried out at different temperatures to explore the effects of initiator, alcohol salt, reaction time, and the molar ratio of lactide:catalyst:alkoxide. The catalytic activity of the catalysts depended largely on their chemical structures. Under the same reaction temperature, catalyst b with larger cation part led to a higher conversion; meanwhile, catalysts a and b with phenyl group in the anionic part were more active than catalyst c bearing an aliphatic group although the latter produced PLA with higher molecular weight and narrower molecular weight distribution. The catalysts developed in this study worked well in the absence of alkoxide, whilst alkoxide and alcohol could improve the performance of the catalyst system. LLA polymerizations could be conveniently performed under atmospheric conditions and increasing temperature resulted in PLA products with higher molecular weight and narrower molecular weight distribution. The conversion reached up to 95.7% after polymerization at 150 °C, in which the Mn and PDI of the PLA product equaled 2.57 kg·mol–1 and 1.24, respectively. DSC measurements indicated that PLAs obtained via varied methods displayed similar melting temperatures in the range of 130 – 134 °C. Further, cooperative dual activation of both the monomer and the initiator/chain-end could be confirmed based on MALDI-TOF-MS analyses. This novel catalyst system possesses specific monocomponent hetero-bifunction with H-bonding capability.
  • 加载中
    1. [1]

      Quilescarrillo L, Blanesmartínez M M, Montanes N, Fenollar O, Torresginer S, Balart R. Eur Polym J, 2018, 98: 402 − 410  doi: 10.1016/j.eurpolymj.2017.11.039

    2. [2]

      Chen Xianghui(陈祥辉), Huang Hanxiong(黄汉雄). Acta Polymerica Sinica(高分子学报), 2017, (8): 1331 − 1338  doi: 10.11777/j.issn1000-3304.2017.17003

    3. [3]

      Chen L, Hu K, Sun S T, Jiang H, Huang D, Zhang K Y, Pan L, Li Y S. Chinese J Polym Sci, 2018, 36(12): 1342 − 1352  doi: 10.1007/s10118-018-2143-6

    4. [4]

      Dalmoro A, Barba A A, Lamberti M, Mazzeo M, Venditto V, Lamberti G. J Mater Sci, 2014, 49(17): 5986 − 5996  doi: 10.1007/s10853-014-8317-x

    5. [5]

      Nofar M, Park C B. Prog Polym Sci, 2014, 39(10): 1721 − 1741  doi: 10.1016/j.progpolymsci.2014.04.001

    6. [6]

      Hu C Y, Duan R L, Yang J W, Dong S J, Sun Z Q, Pang X, Wang X H, Chen X S. Chinese J Polym Sci, 2018, 36(10): 1123 − 1128  doi: 10.1007/s10118-018-2129-4

    7. [7]

      Champouret Y, Visseaux M. Polym Chem-UK, 2018, 9: 2517 − 2531  doi: 10.1039/C8PY00310F

    8. [8]

      Wu D, Lv Y, Guo R, Li J H, Habadati A, Lu B, Wang H Y, Wei Z. Macromol Res, 2017, 25(11): 1070 − 1075  doi: 10.1007/s13233-017-5148-z

    9. [9]

      Hu J, Kan C, Ma H. Inorg Chem, 2018, 57(17): 11240 − 11251  doi: 10.1021/acs.inorgchem.8b01839

    10. [10]

      Hu S, Zhao J, Zhang G, Schlaad H. Prog Polym Sci, 2017, 74: 34 − 77  doi: 10.1016/j.progpolymsci.2017.07.002

    11. [11]

      Li H, Ai B R, Hong M. Chinese J Polym Sci, 2017, 36(2): 231 − 236  doi: 10.1007/s10118-018-2071-5

    12. [12]

      Wang Ziyu(王子羽), He Wenwen(何文文), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘), Zhang Quanxing(张全兴). Acta Polymerica Sinica(高分子学报), 2018, (7): 786 − 796  doi: 10.11777/j.issn1000-3304.2018.18036

    13. [13]

      Zhang X, Jones G O, Hedrick J L, Waymouth R M. Nat Chem, 2016, 8(11): 1047 − 1053  doi: 10.1038/nchem.2574

    14. [14]

      Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. J Am Chem Soc, 2019, 141: 281 − 289  doi: 10.1021/jacs.8b09739

    15. [15]

      Zhang C J, Duan H Y, Hu L F, Zhang C H, Zhang X H. ChemSusChem, 2018, 11(24): 4209 − 4213  doi: 10.1002/cssc.v11.24

    16. [16]

      Nederberg F, Connor E F, Möller M. Angew Chem Int Ed, 2001, 40(14): 2712 − 2715  doi: 10.1002/(ISSN)1521-3773

    17. [17]

      Mezzasalma L, Dove A P, Coulembier O. Eur Polym J, 2017, 95: 628 − 634  doi: 10.1016/j.eurpolymj.2017.05.013

    18. [18]

      Nachtergael A, Coulembier O, Dubois P, Helvenstein M, Duez P, Blankert B, Mespouille L. Biomacromolecules, 2015, 16(2): 507 − 514  doi: 10.1021/bm5015443

    19. [19]

      Dove A P, Pratt R C, Lohmeijer B G, Waymouth R M, Hedrick J L. J Am Chem Soc, 2005, 127(40): 13798 − 13799  doi: 10.1021/ja0543346

    20. [20]

      Coady D J, Kazuki F, Horn H W, Rice J E, Hedrick J L. Chem Commun, 2011, 47(11): 3105 − 3107  doi: 10.1039/c0cc03987j

    21. [21]

      Rostami A, Sadeh E, Ahmadi S. J Polym Sci, Part A: Polym Chem, 2017, 55(15): 2483 − 2493  doi: 10.1002/pola.v55.15

    22. [22]

      Yarhosseini M, Javanshir S, Dekamin M G, Farhadnia M. Monatsh Chem, 2016, 147(10): 1779 − 1787  doi: 10.1007/s00706-016-1666-1

    23. [23]

      Dekamin M G, Sagheb-Asl S, Reza Naimi-Jamal M. Tetrahedron Lett, 2009, 50(28): 4063 − 4066  doi: 10.1016/j.tetlet.2009.04.090

    24. [24]

      Pratt R C, Lohmeijer B G G, Long D A, Lundberg P N P, Dove A P, Li H B, Wade C G, Waymouth R M, Hedrick J L. Macromolecules, 2017, 39(23): 7863 − 7871

    25. [25]

      Kan Z, Luo W, Shi T, Wei C, Han B, Zheng D, Liu S. Front Chem, 2018, 6: 547 − 563  doi: 10.3389/fchem.2018.00547

    26. [26]

      Pan X, Liu Z, Cheng R, Jin D, He X, Liu B. J Organomet Chem, 2014, 753: 63 − 71  doi: 10.1016/j.jorganchem.2013.12.001

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    3. [3]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(0)
  • Abstract views(124)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return