Citation: Zhen-yue Yang, Wen-duo Chen, Li-jun Liu, Ji-zhong Chen. Migration of Ring Polymers in Poiseuille Flow and Comparison with Linear Polymers[J]. Acta Polymerica Sinica, ;2019, 50(11): 1229-1238. doi: 10.11777/j.issn1000-3304.2019.19074 shu

Migration of Ring Polymers in Poiseuille Flow and Comparison with Linear Polymers

  • The dynamical and conformational properties of individual ring polymers with different chain lengths are investigated in Poiseuille flow through a tube using a hybrid mesoscale hydrodynamic simulation method, and migration behaviors are compared with those of linear chains. As the flow strength is increased, the ring chains migrate towards the centerline of the tube when the hydrodynamic interactions are included, but towards the tube wall when the hydrodynamic interactions are switched off. By analyzing the radial center-of-mass distribution function and the width of the distribution function of the ring chains, our studies reveal that the migration towards the centerline of the tube should be attributed to the hydrodynamic interactions rather than to the shear gradient in the Poiseuille flow. With the increase of flow intensity, the ring chains stretched more along the flow direction and shrunk smaller along the radial direction, independent of the location of their center-of-mass across the tube. When the hydrodynamic interactions are switched off, the extension along the flow direction and the shrinkage along the radial direction of the ring polymers are more pronounced than those with the hydrodynamic interactions. For a given flow strength, the longer the ring chain is, the eaiser it is to concentrate around the center of the tube due to the stronger hydrodynamic interactions between the chain and the tube wall, and the resulting distribution structure transits from the platform to the bimodal, and finally to the single-peaked with increasing chain length. By comparing the center-of-mass distributions and the structural properties between the ring and linear chains with the same chain length or the equilibrium radius of gyration, our simulation results show that the linear chains exhibit a more stretched conformation along the flow direction than the ring polymer chains, leading to the outward migration with a lower number density in the tube center.
  • 加载中
    1. [1]

      Witz G, Rechendorff K, Adamcik J, Dietler G. Phys Rev Lett, 2011, 106: 248301  doi: 10.1103/PhysRevLett.106.248301

    2. [2]

      Jung Y, Jeon C, Kim J, Jeong H, Jun S, Ha B Y. Soft Matter, 2012, 8: 2095 − 2102  doi: 10.1039/C1SM05706E

    3. [3]

      Levy M S, O'Kennedy R D, Shamlou P A, Dunnill P. Trends Biotechnol, 2000, 18: 296 − 305  doi: 10.1016/S0167-7799(00)01446-3

    4. [4]

      Vafabakhsh R, Ha T. Science, 2012, 337: 1097 − 1101  doi: 10.1126/science.1224139

    5. [5]

      Gebhardt J C M, Bornschlogl T, Rief M. Proc Natl Acad Sci, 2010, 107: 2013 − 2018  doi: 10.1073/pnas.0909854107

    6. [6]

      Lasda E, Parker R. RNA, 2014, 20: 1829 − 1842  doi: 10.1261/rna.047126.114

    7. [7]

      Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, Li B, Zhang C, Duan C. J Hematol Oncol, 2017, 10: 1 − 8  doi: 10.1186/s13045-016-0379-6

    8. [8]

      Weiss L B, Nikoubashman A, Likos C N. ACS Macro Letters, 2017, 6: 1426 − 1431  doi: 10.1021/acsmacrolett.7b00768

    9. [9]

      Saintillan D, Shaqfeh E S G, Darve E. J Fluid Mech, 2006, 557: 297 − 306  doi: 10.1017/S0022112006000243

    10. [10]

      Hsiao K W, Schroeder C M, Sing C E. Macromolecules, 2016, 49: 1961 − 1971  doi: 10.1021/acs.macromol.5b02357

    11. [11]

      Chelakkot R, Winkler R G, Gompper G. J Phys: Condens Matter, 2011, 23: 184117  doi: 10.1088/0953-8984/23/18/184117

    12. [12]

      Hernández-Ortiz J P, Ma H, de Pablo J J, Graham M D. Phys Fluids, 2006, 18: 123101  doi: 10.1063/1.2397571

    13. [13]

      Xu X, Chen J, An L. Sci China Chem, 2017, 60: 1609 − 1616  doi: 10.1007/s11426-017-9129-3

    14. [14]

      Steinhauser D, Köster S, Pfohl T. ACS Macro Letters, 2012, 1: 541 − 545  doi: 10.1021/mz3000539

    15. [15]

      Fang L, Hu H, Larson R G. J Rheol, 2005, 49: 127 − 138  doi: 10.1122/1.1822930

    16. [16]

      Fang L, Larson R G. Macromolecules, 2007, 40: 8784 − 8787  doi: 10.1021/ma0626315

    17. [17]

      Ma H, Graham M D. Phys Fluids, 2005, 17: 083103  doi: 10.1063/1.2011367

    18. [18]

      Butler J E, Usta O B, Kekre R, Ladd A J C. Phys Fluids, 2007, 19: 113101  doi: 10.1063/1.2801409

    19. [19]

      Fan X, Phan-Thien N, Yong N T, Wu X, Xu D. Phys Fluids, 2003, 15: 11 − 21  doi: 10.1063/1.1522750

    20. [20]

      Usta O B, Ladd A J C, Butler J E. J Chem Phys, 2005, 122: 094902  doi: 10.1063/1.1854151

    21. [21]

      Usta O B, Butler J E, Ladd A J C. Phys Fluids, 2006, 18: 031703  doi: 10.1063/1.2186591

    22. [22]

      Guo Jiayi(郭佳意), Li Xuejin(李学进), Liang Haojun(梁好均). Acta Polymerica Sinica(高分子学报), 2012, (2): 160 − 167  doi: 10.3724/SP.J.1105.2012.11117

    23. [23]

      Xu Shaofeng(许少锋), Wang Jiugen(汪久根). Acta Polymerica Sinica(高分子学报), 2015, (3): 346 − 355  doi: 10.11777/j.issn1000-3304.2015.14290

    24. [24]

      Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J. Phys Rev Lett, 2003, 91: 038102  doi: 10.1103/PhysRevLett.91.038102

    25. [25]

      Jendrejack R M, Schwartz D C, Graham M D, de Pablo J J. J Chem Phys, 2003, 119: 1165 − 1173  doi: 10.1063/1.1575200

    26. [26]

      Jendrejack R M, Schwartz D C, de Pablo J J, Graham M D. J Chem Phys, 2004, 120: 2513 − 2529  doi: 10.1063/1.1637331

    27. [27]

      Khare R, Graham M D, de Pablo J J. Phys Rev Lett, 2006, 96: 224505  doi: 10.1103/PhysRevLett.96.224505

    28. [28]

      Weeks J D, Chandler D, Andersen H C. J Chem Phys, 1971, 54: 5237 − 5247  doi: 10.1063/1.1674820

    29. [29]

      Kremer K, Grest G S. J Chem Phys, 1990, 92: 5057 − 5086  doi: 10.1063/1.458541

    30. [30]

      Malevanets A, Kapral R. J Chem Phys, 1999, 110: 8605 − 8613  doi: 10.1063/1.478857

    31. [31]

      Mussawisade K, Ripoll M, Winkler R G, Gompper G. J Chem Phys, 2005, 123: 144905  doi: 10.1063/1.2041527

    32. [32]

      Ripoll M, Winkler R G, Gompper G. Phys Rev Lett, 2006, 96: 188302  doi: 10.1103/PhysRevLett.96.188302

    33. [33]

      Gompper G, Ihle T, Winkler R. Adv Polym Sci, 2009, 221: 1 − 87

    34. [34]

      Liu L, Chen J, Chen W, Li L, An L. Sci China Chem, 2014, 57: 1048 − 1052

    35. [35]

      Ihle T, Kroll D. Phys Rev E, 2003, 67: 066705  doi: 10.1103/PhysRevE.67.066705

    36. [36]

      Ripoll M, Winkler R G, Gompper G. Eur Phys J E, 2007, 23: 349 − 354  doi: 10.1140/epje/i2006-10220-0

    37. [37]

      Padding J, Louis A. Phys Rev E, 2006, 74: 031402

    38. [38]

      Lamura A, Gompper G, Ihle T, Kroll D M. Europhys Lett, 2001, 56: 319 − 325  doi: 10.1209/epl/i2001-00522-9

    39. [39]

      Huang C C, Chatterji A, Sutmann G, Gompper G, Winkler R G. J Comput Phys, 2010, 229: 68 − 177

    40. [40]

      Chelakkot R, Winkler R G, Gompper G. Europhys Lett, 2010, 91: 14001  doi: 10.1209/0295-5075/91/14001

    41. [41]

      Wen X, Zhang D, Zhang L. Polymer, 2012, 53: 873 − 880  doi: 10.1016/j.polymer.2011.12.048

    42. [42]

      Bolintineanu D S, Lechman J B, Plimpton S J, Grest G S. Phys Rev E, 2012, 86: 066703  doi: 10.1103/PhysRevE.86.066703

    43. [43]

      Busse W F. Phys Today, 1964, 17: 32 − 41

    44. [44]

      Metzner A B, Cohen Y, Rangel-Nafaile C. J Non-Newtonian Fluid Mech, 1979, 5: 449 − 462  doi: 10.1016/0377-0257(79)85029-6

    45. [45]

      Millan J A, Jiang W, Laradji M, Wang Y. J Chem Phys, 2007, 126: 124905  doi: 10.1063/1.2711435

  • 加载中
    1. [1]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    2. [2]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    3. [3]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    4. [4]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    5. [5]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    8. [8]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    9. [9]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    10. [10]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    11. [11]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    12. [12]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    13. [13]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    16. [16]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    17. [17]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    18. [18]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    19. [19]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    20. [20]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

Metrics
  • PDF Downloads(0)
  • Abstract views(100)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return