Citation: Jie-ming Zheng, Xin-bo Wen, Jia-dong Zhou, Nan Zheng, Zeng-qi Xie. Research Progress on Aggregation Structure of Conjugated Polymers in Multicomponent Blends[J]. Acta Polymerica Sinica, ;2019, 50(8): 775-807. doi: 10.11777/j.issn1000-3304.2019.19062 shu

Research Progress on Aggregation Structure of Conjugated Polymers in Multicomponent Blends

  • Conjugated polymers have attracted much attention due to their unique electronic properties and solution processing methods. The rigid and planar conformational backbone manifests extended π-system and the flexible alkyl chain assures the sufficient solubility, which contribute to their tuneable physical and chemical properties and increase the tolerance of film forming and mechanical flexibility. In general, the orthogonal design of functional fragments for conjugated polymers make it accessible for π-stacking of conjugated segments and lamellar stacking of interchain interactions. Short-range aggregates or long-range microcrystals would be selectively and/or successively formed by controlling their chemical structures and processing conditions. Such stacking structure in the phase-separated domain is crucial to the high efficient performance of bulk heterojunction solar cells. The aggregation structure of some typical conjugated polymers has recently been reviewed with a view to providing reference for the development of optoelectrics in this study. Here, D-A copolymers based on oligothiophene, dithiophene, benzothiophene and thiophene derivatives, two-dimensional conjugated polymers and block copolymers are introduced in detail. The aggregation structure of a series of conjugated polymers is systematically summarized by using the different processing techniques, such as selective counterpart components, treating solvents and annealing temperature. In addition, the intrinsic motivation of the controllable aggregation structure is discussed from the aspects of molecular weight and side chain groups.
  • 加载中
    1. [1]

      Cheng Y J, Yang S H, Hsu C S. Chem Rev, 2009, 109(11): 5868 − 5923  doi: 10.1021/cr900182s

    2. [2]

      Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev, 2015, 115(23): 12666 − 12731  doi: 10.1021/acs.chemrev.5b00098

    3. [3]

      Bin H, Gao L, Zhang Z, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651  doi: 10.1038/ncomms13651

    4. [4]

      Li Z, Jiang K, Yang G, Lin Lai J Y, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094  doi: 10.1038/ncomms13094

    5. [5]

      Noriega R, Rivnay J, Vandewal K, Koch F, Stingelin N, Smith P, Toney M F, Salleo A. Nat Mater, 2013, 12(11): 1038  doi: 10.1038/nmat3722

    6. [6]

      He M, Han W, Ge J, Yang Y, Qiu F, Lin Z. Energy Environ Sci, 2011, 4(8): 2894 − 2902  doi: 10.1039/c1ee01509e

    7. [7]

      He M, Han W, Ge J, Yu W, Yang Y, Qiu F, Lin Z. Nanoscale, 2011, 3(8): 3159 − 3163  doi: 10.1039/c1nr10293a

    8. [8]

      Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1246 − 1260  doi: 10.11777/j.issn1000-3304.2017.17127

    9. [9]

      Qin R, Li W, Li C, Du C, Veit C, Schleiermacher H-F, Andersson M, Bo Z, Liu Z, Inganas O, Wuerfel U, Zhang F. J Am Chem Soc, 2009, 131(41): 14612 − 14613  doi: 10.1021/ja9057986

    10. [10]

      Du C, Li C, Li W, Chen X, Bo Z, Veit C, Ma Z, Wuerfel U, Zhu H, Hu W, Zhang F. Macromolecules, 2011, 44(19): 7617 − 7624  doi: 10.1021/ma201477b

    11. [11]

      Kouijzer S, Michels J J, van den Berg M, Gevaerts V S, Turbiez M, Wienk M M, Janssen R A J. J Am Chem Soc, 2013, 135(32): 12057 − 12067  doi: 10.1021/ja405493j

    12. [12]

      Gee R H, Lacevic N, Fried L E. Nat Mater, 2006, 5(1): 39 − 43

    13. [13]

      Ermi B D, Karim A, Douglas J F. J Polym Sci, Part B: Polym Phys, 1998, 36(1): 191 − 200  doi: 10.1002/(ISSN)1099-0488

    14. [14]

      Willemse R C, de Boer A P, van Dam J, Gotsis A D. Polymer, 1999, 40(4): 827 − 834  doi: 10.1016/S0032-3861(98)00307-3

    15. [15]

      Bin Haijun(宾海军), Li Yongfang(李永舫). Acta Polymerica Sinica(高分子学报), 2017, (9): 1444 − 1461  doi: 10.11777/j.issn1000-3304.2017.17119

    16. [16]

      Wang H, Chen L, Xing R, Liu J, Han Y. Langmuir, 2015, 31(1): 469 − 479  doi: 10.1021/la5037772

    17. [17]

      Zhou K, Zhang R, Liu J, Li M, Yu X, Xing R, Han Y. ACS Appl Mater Interfaces, 2015, 7(45): 25352 − 25361  doi: 10.1021/acsami.5b07605

    18. [18]

      Zhang R, Yang H, Zhou K, Zhang J, Yu X, Liu J, Han Y. Macromolecules, 2016, 49(18): 6987 − 6996  doi: 10.1021/acs.macromol.6b01526

    19. [19]

      Zhou K, Liu J, Li M, Yu X, Xing R, Han Y. J Phys Chem C, 2015, 119(4): 1729 − 1736  doi: 10.1021/jp511370x

    20. [20]

      Hu H, Chow P C Y, Zhang G, Ma T, Liu J, Yang G, Yan H. Acc Chem Res, 2017, 50(10): 2519 − 2528  doi: 10.1021/acs.accounts.7b00293

    21. [21]

      Chen S, Liu Y, Zhang L, Chow P C Y, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc, 2017, 139(18): 6298 − 6301  doi: 10.1021/jacs.7b01606

    22. [22]

      Cao F Y, Tseng C C, Lin F Y, Chen Y, Yan H, Cheng Y J. Chem Mater, 2017, 29(23): 10045 − 10052  doi: 10.1021/acs.chemmater.7b03688

    23. [23]

      Kang H, Uddin M A, Lee C, Kim K-H, Nguyen T L, Lee W, Li Y, Wang C, Woo H Y, Kim B J. J Am Chem Soc, 2015, 137(6): 2359 − 2365  doi: 10.1021/ja5123182

    24. [24]

      Lee C, Li Y, Lee W, Lee Y, Choi J, Kim T, Wang C, Gomez E D, Woo H Y, Kim B J. Macromolecules, 2016, 49(14): 5051 − 5058  doi: 10.1021/acs.macromol.6b01069

    25. [25]

      Wang M, Hu X, Liu L, Duan C, Liu P, Ying L, Huang F, Cao Y. Macromolecules, 2013, 46(10): 3950 − 3958  doi: 10.1021/ma400355w

    26. [26]

      Zhong W, Sun S, Ying L, Liu F, Lan L, Huang F, Cao Y. ACS Appl Mater Interfaces, 2017, 9(8): 7315 − 7321  doi: 10.1021/acsami.6b13673

    27. [27]

      Zhang M, Guo X, Li Y. Macromolecules, 2011, 44(22): 8798 − 8804  doi: 10.1021/ma201976t

    28. [28]

      Cho H H, Kang T E, Kim K H, Kang H, Kim H J, Kim B J. Macromolecules, 2012, 45(16): 6415 − 6423  doi: 10.1021/ma301362t

    29. [29]

      Kim J H, Song C E, Shin N, Kang H, Wood S, Kang I N, Kim B J, Kim B, Kim J S, Shin W S, Hwang D H. ACS Appl Mater Interfaces, 2013, 5(24): 12820 − 12831  doi: 10.1021/am401926h

    30. [30]

      Zhang M, Fan H, Guo X, He Y, Zhang Z G, Min J, Zhang J, Zhao G, Zhan X, Li Y. Macromolecules, 2010, 43(21): 8714 − 8717  doi: 10.1021/ma1018654

    31. [31]

      Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett, 2014, 14(5): 2764 − 2771  doi: 10.1021/nl500758w

    32. [32]

      Perez L A, Zalar P, Ying L, Schmidt K, Toney M F, Nguyen T Q, Bazan G C, Kramer E J. Macromolecules, 2014, 47(4): 1403 − 1410  doi: 10.1021/ma4019679

    33. [33]

      Bridges C R, Ford M J, Thomas E M, Gomez C, Bazan G C, Segalman R A. Macromolecules, 2018, 51(21): 8597 − 8604  doi: 10.1021/acs.macromol.8b01906

    34. [34]

      Nguyen T L, Lee C, Kim H, Kim Y, Lee W, Oh J H, Kim B J, Woo H Y. Macromolecules, 2017, 50(11): 4415 − 4424  doi: 10.1021/acs.macromol.7b00452

    35. [35]

      Yuan J, Ford M J, Zhang Y, Dong H, Li Z, Li Y, Nguyen T Q, Bazan G C, Ma W. Chem Mater, 2017, 29(4): 1758 − 1768  doi: 10.1021/acs.chemmater.6b05365

    36. [36]

      Ying L, Hsu B B Y, Zhan H, Welch G C, Zalar P, Perez L A, Kramer E J, Nguyen T Q, Heeger A J, Wong W Y, Bazan G C. J Am Chem Soc, 2011, 133(46): 18538 − 18541  doi: 10.1021/ja207543g

    37. [37]

      Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Fréchet J M. J Am Chem Soc, 2010, 132(22): 7595 − 7597  doi: 10.1021/ja103275u

    38. [38]

      He R, Yu L, Cai P, Peng F, Xu J, Ying L, Chen J, Yang W, Cao Y. Macromolecules, 2014, 47(9): 2921 − 2928  doi: 10.1021/ma500333r

    39. [39]

      Zhao R, Bi Z, Dou C, Ma W, Han Y, Liu J, Wang L. Macromolecules, 2017, 50(8): 3171 − 3178  doi: 10.1021/acs.macromol.7b00386

    40. [40]

      Ye L, Zhang S, Zhao W, Yao H, Hou J. Chem Mater, 2014, 26(12): 3603 − 3605  doi: 10.1021/cm501513n

    41. [41]

      Liu C, Dong S, Cai P, Liu P, Liu S, Chen J, Liu F, Ying L, Russell T P, Huang F, Cao Y. ACS Appl Mater Interfaces, 2015, 7(17): 9038 − 9051  doi: 10.1021/am5089956

    42. [42]

      Huang H, Bin H, Peng Z, Qiu B, Sun C, Liebman-Pelaez A, Zhang Z G, Zhu C, Ade H, Zhang Z, Li Y. Macromolecules, 2018, 51(15): 6028 − 6036  doi: 10.1021/acs.macromol.8b01036

    43. [43]

      Bin H, Zhang Z-G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138(13): 4657 − 4664  doi: 10.1021/jacs.6b01744

    44. [44]

      Zhong W, Li K, Cui J, Gu T, Ying L, Huang F, Cao Y. Macromolecules, 2017, 50(20): 8149 − 8157  doi: 10.1021/acs.macromol.7b01432

    45. [45]

      Kranthiraja K, Park S H, Kim H, Gunasekar K, Han G, Kim B J, Kim C S, Kim S, Lee H, Nishikubo R, Saeki A, Jin S H, Song M. ACS Appl Mater Interfaces, 2017, 9(41): 36053 − 36060  doi: 10.1021/acsami.7b09146

    46. [46]

      Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J. Macromolecules, 2012, 45(24): 9611 − 9617  doi: 10.1021/ma301900h

    47. [47]

      Zhang M, Gu Y, Guo X, Liu F, Zhang S, Huo L, Russell T P, Hou J. Adv Mater, 2013, 25(35): 4944 − 4949  doi: 10.1002/adma.201301494

    48. [48]

      Zhang M, Guo X, Ma W, Zhang S, Huo L, Ade H, Hou J. Adv Mater, 2014, 26(13): 2089 − 2095  doi: 10.1002/adma.201304631

    49. [49]

      Zhang M, Guo X, Ma W, Ade H, Hou J. Adv mater, 2015, 27(31): 4655 − 4660  doi: 10.1002/adma.v27.31

    50. [50]

      Huo L, Liu T, Sun X, Cai Y, Heeger A J, Sun Y. Adv Mater, 2015, 27(18): 2938 − 2944  doi: 10.1002/adma.v27.18

    51. [51]

      Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148 − 7151  doi: 10.1021/jacs.7b02677

    52. [52]

      Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30(20): 1800868  doi: 10.1002/adma.v30.20

    53. [53]

      Fei Z, Eisner F D, Jiao X, Azzouzi M, Röhr J A, Han Y, Shahid M, Chesman A S R, Easton C D, McNeill C R, Anthopoulos T D, Nelson J, Heeney M. Adv Mater, 2018, 30(8): 1705209  doi: 10.1002/adma.v30.8

    54. [54]

      Kim J S, Han J, Kim Y, Park H, Coote J P, Stein G E, Kim B J. Macromolecules, 2018, 51(11): 4077 − 4084  doi: 10.1021/acs.macromol.8b00795

    55. [55]

      Feng S, Liu C, Xu X, Liu X, Zhang L, Nian Y, Cao Y, Chen J. ACS Macro Letters, 2017, 6(11): 1310 − 1314  doi: 10.1021/acsmacrolett.7b00738

    56. [56]

      Yu X, Yang H, Wu S, Geng Y, Han Y. Macromolecules, 2012, 45(1): 266 − 274  doi: 10.1021/ma201024z

    57. [57]

      Yang H, Zhang R, Wang L, Zhang J, Yu X, Liu J, Xing R, Geng Y, Han Y. Macromolecules, 2015, 48(20): 7557 − 7566  doi: 10.1021/acs.macromol.5b01804

    58. [58]

      Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec C J, Janssen R A J, Bazan G C, Huang F, Cao Y. J Am Chem Soc, 2018, 140(28): 8934 − 8943  doi: 10.1021/jacs.8b05038

    59. [59]

      Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell T P, Yip H L, Huang F, Cao Y. Chem Mater, 2014, 26(9): 3009 − 3017  doi: 10.1021/cm500953e

    60. [60]

      Lee W, Kim J S, Kim H J, Shin J M, Ku K H, Yang H, Lee J, Bae J G, Lee W B, Kim B J. Macromolecules, 2015, 48(16): 5563 − 5569  doi: 10.1021/acs.macromol.5b01068

    61. [61]

      Kim Y, Kim H J, Kim J S, Yun H, Park H, Han J, Kim B J. Chem Mater, 2018, 30(21): 7912 − 7921  doi: 10.1021/acs.chemmater.8b03510

    62. [62]

      Coote J P, Kim J S, Lee B, Han J, Kim B J, Stein G E. Macromolecules, 2018, 51(22): 9276 − 9283  doi: 10.1021/acs.macromol.8b01985

    63. [63]

      Facchetti A. Chem Mater, 2011, 23(3): 733 − 758  doi: 10.1021/cm102419z

    64. [64]

      Kang T E, Choi J, Cho H H, Yoon S C, Kim B J. Macromolecules, 2016, 49(6): 2096 − 2105  doi: 10.1021/acs.macromol.5b02772

    65. [65]

      Ku S Y, Brady M A, Treat N D, Cochran J E, Robb M J, Kramer E J, Chabinyc M L, Hawker C J. J Am Chem Soc, 2012, 134(38): 16040 − 16046  doi: 10.1021/ja307431k

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    13. [13]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(0)
  • Abstract views(118)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return