Citation: Zhao-hui Tang, Xue-si Chen. Tumor-targeting Drug Delivery Systems Based on Poly(L-glutamic acid)-g-Poly(ethylene glycol)[J]. Acta Polymerica Sinica, ;2019, 50(6): 543-552. doi: 10.11777/j.issn1000-3304.2019.19036 shu

Tumor-targeting Drug Delivery Systems Based on Poly(L-glutamic acid)-g-Poly(ethylene glycol)

  • Corresponding author: Xue-si Chen, xschen@ciac.ac.cn
  • Received Date: 21 February 2019
    Revised Date: 9 April 2019
    Available Online: 9 May 2019

  • Tumor-targeting drug delivery systems based on poly(ethylene glycol)-poly(amino acid) carriers have great potential in reducing the side effects of anticancer drugs, increasing the therapeutic index, and enhancing the druggability of drug candidates. In this work, recent progresses of our group in the tumor-targeting drug delivery systems with poly(L-glutamic acid)-graft-poly(ethylene glycol) (PLG-g-mPEG) as carrier, are reviewed. The influence of polymer structure on the behavior of nanomedicine in vivo is discussed. Several parameters, including PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length and drug loading content, have a significant influence on the plasma pharmacokinetics of the cisplatin-loaded PLG-g-mPEG nanoparticles (CDDP-NPs). The blood circulation time of the nanoparticles is prolonged with increases in PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length and cisplatin loading content. Cooperative treatment concepts, such as " periphery and center” and " coagulation targeting”, are proposed. By coadministering a vascular disrupting agent (VDA) CA4P and CDDP-NPs, the CDDP-NPs mainly locates at the tumor periphery and leaves most of cancer cells at tumor center viable, the CA4P can make up defect of CDDP-NPs and efficiently kill cancer cells in tumor central regions. The " coagulation targeting” delivery platform comprises a coagulation-inducing agent and coagulation-targeted polymeric nanoparticles. As a typical VDA, DMXAA can create a unique artificial coagulation environment with additional binding sites in a solid tumor by locally activating a coagulation cascade. Coagulation-targeted cisplatin-loaded nanoparticles can selectively accumulate in the solid tumor by homing to the VDA-induced artificial coagulation environment through transglutamination. We discover that the low permeability of nanomedicine in solid tumors can significantly improve the targeting to tumor blood vessels and tumor inhibition ability of VDAs. This provides a new idea for enhancing the therapeutic effect of VDAs in tumor treatment. A powerful combinational strategy is created with nanomedicine of VDAs plus hypoxia-activated prodrugs (HAPs) for the treatment of solid tumors. The nanomedicine of VDAs can selectively enhance tumor hypoxia and boost a typical HAP tirapazamine therapy against metastatic 4T1 breast tumors.
  • 加载中
    1. [1]

      Schrempf W, Ziemssen T. Autoimmun Rev, 2007, 6(7): 469 − 475  doi: 10.1016/j.autrev.2007.02.003

    2. [2]

      Wang G Y, Zhang D W, Yang S C, Wang Y L, Tang Z H, Fu X Q. Biomater Sci, 2018, 6(4): 827 − 835  doi: 10.1039/C7BM01201B

    3. [3]

      Song W T, Tang Z H, Zhang D W, Zhang Y, Yu H Y, Li M Q, Lv S X, Sun H, Deng M X, Chen X S. Biomaterials, 2014, 35(9): 3005 − 3014  doi: 10.1016/j.biomaterials.2013.12.018

    4. [4]

      Song W T, Tang Z H, Li M Q, Lv S X, Sun H, Deng M X, Liu H Y, Chen X S. Acta Biomater, 2014, 10(3): 1392 − 1402  doi: 10.1016/j.actbio.2013.11.026

    5. [5]

      Yang C G, Xue B J, Song W T, Kan B, Zhang D W, Yu H Y, Shen N, Li X F, Tang Z H, Chen X S. Biomater Sci, 2018, 6(8): 2189 − 2196  doi: 10.1039/C8BM00506K

    6. [6]

      Tang Z H, He C L, Tian H Y, Ding J X, Hsiao B S, Chu B, Chen X S. Prog Polym Sci, 2016, 60: 86 − 128  doi: 10.1016/j.progpolymsci.2016.05.005

    7. [7]

      Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Br J Cancer, 2004, 91: 1775  doi: 10.1038/sj.bjc.6602204

    8. [8]

      Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R. Invest New Drugs, 2012, 30(4): 1621 − 1627  doi: 10.1007/s10637-011-9709-2

    9. [9]

      Svenson S. Curr Opin Solid St M, 2012, 16(6): 287 − 294  doi: 10.1016/j.cossms.2012.10.001

    10. [10]

      Baba M, Matsumoto Y, Kashio A, Cabral H, Nishiyama N, Kataoka K, Yamasoba T. J Control Release, 2012, 157(1): 112 − 117  doi: 10.1016/j.jconrel.2011.07.026

    11. [11]

      Bosl G J, Motzer R J. New Engl J Med, 1997, 337: 242 − 254  doi: 10.1056/NEJM199707243370406

    12. [12]

      Dhar S, Kolishetti N, Lippard S J, Farokhzad O C. Proc Natl Acad Sci USA, 2011, 108(5): 1850 − 1855  doi: 10.1073/pnas.1011379108

    13. [13]

      Galanski M, Jakupec M A, Keppler B K. Curr Med Chem, 2005, 12(18): 2075 − 2094  doi: 10.2174/0929867054637626

    14. [14]

      Aranya I, Safirsteina R L. Semin Nephrol, 2003, 23(5): 460 − 464  doi: 10.1016/S0270-9295(03)00089-5

    15. [15]

      Brillet G, Deray G, Jacquiaud C, Mignot L, Bunker D, Meillet D, Raymond F, Jacobs C. Am J Nephrol, 1994, 14(2): 81 − 84  doi: 10.1159/000168693

    16. [16]

      Gomez Campdera F J, Gonzalez, P, Carrillo, A, Estelles, M C, Rengel, M. Int J Pediatr Nephrol, 1986, 7(3): 151 − 152

    17. [17]

      Gonzales-Vitale J, Hayes D, Cvitkovic E, Sternberg S. Cancer, 1977, 39(4): 1362 − 1371  doi: 10.1002/(ISSN)1097-0142

    18. [18]

    19. [19]

    20. [20]

      Maeda H. Adv Drug Delive Rev, 2015, 91: 3 − 6  doi: 10.1016/j.addr.2015.01.002

    21. [21]

      Maeda H. J Control Release, 2012, 164(2): 138 − 144  doi: 10.1016/j.jconrel.2012.04.038

    22. [22]

      Yu H Y, Tang Z H, Li M Q, Song W T, Zhang D W, Zhang Y, Yang Y, Sun H, Deng M X, Chen X S. J Biomed Nanotechnol, 2016, 12(1): 69 − 78  doi: 10.1166/jbn.2016.2152

    23. [23]

      Yu H Y, Tang Z H, Zhang D W, Song W T, Zhang Y, Yang Y, Ahmad Z, Chen X S. J Control Release, 2015, 205: 89 − 97  doi: 10.1016/j.jconrel.2014.12.022

    24. [24]

      Li Y F, Yu H Y, Sun H, Liu J G, Tang Z H, Wang D, Yu L Y, Chen X S. Chinese J Polym Sci, 2015, 33(5): 763 − 771  doi: 10.1007/s10118-015-1624-0

    25. [25]

      Song W T, Tang Z H, Shen N, Yu H Y, Jia Y J, Zhang D W, Jiang J, He C L, Tian H Y, Chen X S. J Control Release, 2016, 231: 94 − 102  doi: 10.1016/j.jconrel.2016.02.039

    26. [26]

      Shi C S, Yu H Y, Sun D J, Ma L L, Tang Z H, Xiao Q S, Chen X S. Acta Biomater, 2015, 18: 68 − 76  doi: 10.1016/j.actbio.2015.02.009

    27. [27]

      Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K. Cancer Res, 2003, 63(24): 8977 − 8983

    28. [28]

      Yan J, Zhang D W, Yu H Y, Ma L L, Deng M X, Tang Z H, Zhang X H. J Biomater Sci Polym Ed, 2017, 28(4): 394 − 414  doi: 10.1080/09205063.2016.1277827

    29. [29]

      Zhou H C, Lv S X, Zhang D W, Deng M X, Zhang X F, Tang Z H, Chen X S. Acta Biomater, 2018, 73: 388 − 399  doi: 10.1016/j.actbio.2018.04.016

    30. [30]

      Yang C G, Song W T, Zhang D W, Yu H Y, Yin L, Shen N, Deng M X, Tang Z H, Gu J K, Chen X S. Int J Pharm, 2018, 550(1): 79 − 88

    31. [31]

      Lee H, Fonge H, Hoang B, Reilly R M, Allen C. Mol Pharm, 2010, 7(4): 1195 − 1208  doi: 10.1021/mp100038h

    32. [32]

      Song W T, Tang Z H, Zhang D W, Yu H Y, Chen X S. Small, 2015, 11(31): 3755 − 3761  doi: 10.1002/smll.v11.31

    33. [33]

      Song W T, Tang Z H, Zhang D W, Wen X, Lv S X, Liu Z L, Deng M X, Chen X S. Theranostics, 2016, 6(7): 1023 − 1030  doi: 10.7150/thno.14741

    34. [34]

      Lv S X, Tang Z H, Song W T, Zhang D W, Li M Q, Liu H Y, Cheng J J, Zhong W, Chen X S. Small, 2017, 13(12): 1600954  doi: 10.1002/smll.v13.12

    35. [35]

      Zhong Y N, Zhang J, Cheng R, Deng C, Meng F H, Xie F, Zhong Z Y. J Control Release, 2015, 205: 144 − 154  doi: 10.1016/j.jconrel.2015.01.012

    36. [36]

      Bedard P L, Hansen A R, Ratain M J, Siu L L. Nature, 2013, 501(7467): 355 − 364  doi: 10.1038/nature12627

    37. [37]

      Junttila M R, de Sauvage F J. Nature, 2013, 501(7467): 346 − 354  doi: 10.1038/nature12626

    38. [38]

      Ruoslahti E, Bhatia S N, Sailor M J. J Cell Biol, 2010, 188(6): 759 − 768  doi: 10.1083/jcb.200910104

    39. [39]

      Marusyk A, Almendro V, Polyak K. Nat Rev Cancer, 2012, 12(5): 323 − 334  doi: 10.1038/nrc3261

    40. [40]

      Song W T, Tang Z H, Zhang D W, Li M Q, Gu J K, Chen X S. Chem Sci, 2016, 7(1): 728 − 736  doi: 10.1039/C5SC01698C

    41. [41]

      Liu T Z, Zhang D W, Song W T, Tang Z H, Zhu J M, Ma Z M, Wang X D, Chen X S, Tong T. Acta Biomater, 2017, 53: 179 − 189  doi: 10.1016/j.actbio.2017.02.001

    42. [42]

      Lippert J W. Biorg Med Chem, 2007, 15(2): 605 − 615  doi: 10.1016/j.bmc.2006.10.020

    43. [43]

      Phillips R M. Cancer Chemoth Pharm, 2016, 77(3): 441 − 457  doi: 10.1007/s00280-015-2920-7

    44. [44]

      Rischin D, Hicks R J, Fisher R, Binns D, Corry J, Porceddu S, Peters L J. J Clin Oncol, 2006, 24(13): 2098 − 2104  doi: 10.1200/JCO.2005.05.2878

    45. [45]

      Yang S C, Tang Z H, Hu C Y, Zhang D W, Shen N, Yu H Y, Chen X S. Adv Mater, 2019, 31(11): 1805955

    46. [46]

      Sun Q H, Sun X R, Ma X P, Zhou Z X, Jin E L, Zhang B, Shen Y Q, van Kirk E A, Murdoch W J, Lott J R, Lodge T P, Radosz M, Zhao Y L. Adv Mater, 2014, 26(45): 7615 − 7621  doi: 10.1002/adma.v26.45

    47. [47]

      Zhou Z X, Liu X R, Zhu D C, Wang Y, Zhang Z, Zhou X F, Qiu N S, Chen X S, Shen Y Q. Adv Drug Deliv Rev, 2017, 115: 115 − 154  doi: 10.1016/j.addr.2017.07.021

    48. [48]

      Sun Q H, Zhou Z X, Qiu N S, Shen Y Q. Adv Mater, 2017, 29(14): 1606628  doi: 10.1002/adma.v29.14

  • 加载中
    1. [1]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    2. [2]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    3. [3]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    4. [4]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    5. [5]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    8. [8]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(0)
  • Abstract views(135)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return