Citation: Jie-fu Li, Shu-guang Yang. The Effect of Interchain Hydrogen Bond on the Mechanical Properties of Poly(acrylic acid)-Poly(ethylene oxide) Complex Films[J]. Acta Polymerica Sinica, ;2019, 50(8): 857-862. doi: 10.11777/j.issn1000-3304.2019.19032 shu

The Effect of Interchain Hydrogen Bond on the Mechanical Properties of Poly(acrylic acid)-Poly(ethylene oxide) Complex Films

  • Corresponding author: Shu-guang Yang, shgyang@dhu.edu.cn
  • Received Date: 11 February 2019
    Revised Date: 4 March 2019
    Available Online: 10 April 2019

  • Poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) can form hydrogen-bonded polymer complex. A PAA/PEO homogenous solution can be obtained by adding NaOH into the mixture to restrict the hydrogen bonding between PAA and PEO. First, PAA was dissolved in 20 mL of NaOH aqueous solution and PEO was dissolved in 20 mL of distilled water with the total mass of PAA and PEO of 3.48 g. After stirred for 6 h and centrifuged in the deaeration system at 3500 r/min for 10 min, the mixture was blade coated onto a PTFE plate through an adjustable film applicator with the thickness of 2 mm, and dried in the ambient environment to obtain PAA/PEO films. The effects of film composition and acid treatment on the structures and mechanical properties of the films were studied by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide angle X-ray diffraction (XRD), and mechanical streching machine. The crystallization behavior of PEO and the mechanical properties of the films showed strong dependence on the hydrogen bonding between PAA and PEO. The elongation increased while the tensile strenghth and the Young’s modulus decreased first and then increased with the increasing PEO content in the films. After incubation in a pH = 1 solution for 3 min, the hydrogen bonding between PAA and PEO was enhanced. Compared with the film without acid treatment, the flexibility of the film was greatly enhanced after acid incubation. In particular, Young’s modulus of the film (n(AA):n(EO) = 1:3) before acid treatment was 426 MPa while it declined to 3 MPa after acid incubation. Namely, when the hydrogen bonding between PAA and PEO became weak, PEO would crystallize and the film performed like a plastic material. When the hydrogen bonding between PAA and PEO became strong, the crystallization of PEO was restricted and the film acted as a rubber material.
  • 加载中
    1. [1]

      Kollman P A, Allen L C. Chem Rev, 1972, 72(3): 283 − 303  doi: 10.1021/cr60277a004

    2. [2]

      Steiner T. Angew Chem Int Ed, 2002, 41(1): 48 − 76  doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5

    3. [3]

      He Y, Zhu B, Inoue Y. Prog Polym Sci, 2004, 29(10): 1021 − 1051  doi: 10.1016/j.progpolymsci.2004.07.002

    4. [4]

      Giordanetto F, Tyrchan C, Ulander J. ACS Med Chem Lett, 2017, 8(2): 139 − 142  doi: 10.1021/acsmedchemlett.7b00002

    5. [5]

      Jeffrey G A. An Introduction to Hydrogen Bonding. New York: Oxford University Press, 1997. 1 – 303

    6. [6]

      Gilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. New York: Oxford University Press, 2009. 1 – 276

    7. [7]

      Guo M, Pitet L M, Wyss H M, Vos M, Dankers P Y, Meijer E. J Am Chem Soc, 2014, 136(19): 6969 − 6977  doi: 10.1021/ja500205v

    8. [8]

      Jiang M, Li M, Xiang M, Zhou H. Adv Polym Sci, 1999, 146: 121 − 196  doi: 10.1007/3-540-49424-3

    9. [9]

      Kuo S W, Chang F C. Macromolecules, 2001, 34(15): 5224 − 5228  doi: 10.1021/ma010517a

    10. [10]

      Vogt G, Woell S, Argos P. J Mol Biol, 1997, 269(4): 631 − 643  doi: 10.1006/jmbi.1997.1042

    11. [11]

      Wang Y, Li T, Li S, Guo R, Sun J. ACS Appl Mater Interfaces, 2015, 7(24): 13597 − 13603  doi: 10.1021/acsami.5b03179

    12. [12]

      Wang Z, Xu J, Wu L, Chen X, Yang S, Liu H, Zhou X. Chinese J Polym Sci, 2015, 33(9): 1334 − 1343  doi: 10.1007/s10118-015-1682-3

    13. [13]

      Lutz J F, Lehn J M, Meijer E, Matyjaszewski K. Nat Rev Mater, 2016, 1(5): 16024 − 16038  doi: 10.1038/natrevmats.2016.24

    14. [14]

      Ten Brinke G, Ruokolainen J, Ikkala O. Adv Polym Sci, 2007, 207: 113 − 177  doi: 10.1007/978-3-540-68588-3

    15. [15]

      Tsuchida E, Abe K. Adv Polym Sci, 1982, 45(12): 1 − 119

    16. [16]

      Bailey Jr F, Lundberg R, Callard R. J Polym Sci, Part A: Polym Chem, 1964, 2(2): 845 − 851

    17. [17]

      Ikawa T, Abe K, Honda K, Tsuchida E. J Polym Sci, Part A: Polym Chem, 1975, 13(7): 1505 − 1514  doi: 10.1002/pol.1975.170130703

    18. [18]

      Lu X, Weiss R. Macromolecules, 1995, 28(9): 3022 − 3029  doi: 10.1021/ma00113a002

    19. [19]

      Khutoryanskiy V V, Dubolazov A V, Nurkeeva Z S, Mun G A. Langmuir, 2004, 20(9): 3785 − 3790  doi: 10.1021/la049807l

    20. [20]

      Kharlampieva E, Sukhishvili S A. J Macromol Sci Pol R, 2006, 46(4): 377 − 395  doi: 10.1080/15583720600945386

    21. [21]

      Nie J, Wang Z, Li J, Gong Y, Sun J, Yang S. Chinese J Polym Sci, 2017, 35(8): 1001 − 1008  doi: 10.1007/s10118-017-1984-8

    22. [22]

      Li J, Wang Z, Wen L, Nie J, Yang S, Xu J, Cheng S Z. ACS Macro Lett, 2016, 5(7): 814 − 818  doi: 10.1021/acsmacrolett.6b00346

    23. [23]

      Lutkenhaus J L, Hrabak K D, McEnnis K, Hammond P T. J Am Chem Soc, 2005, 127(49): 17228 − 17234  doi: 10.1021/ja053472s

    24. [24]

      Wang Y, Liu X, Li S, Li T, Song Y, Li Z, Zhang W, Sun J. ACS Appl Mater Interfaces, 2017, 9(34): 29120 − 29129  doi: 10.1021/acsami.7b08636

    25. [25]

      Liu W, Chung C, Hong J. ACS Omega, 2018, 3(9): 11368 − 11382  doi: 10.1021/acsomega.8b01456

    26. [26]

      Petrov A I, Antipov A A, Sukhorukov G B. Macromolecules, 2003, 36(26): 10079 − 10086  doi: 10.1021/ma034516p

    27. [27]

      Choi J, Rubner M F. Macromolecules, 2005, 38(1): 116 − 124  doi: 10.1021/ma048596o

    28. [28]

      Yang S, Zhang Y, Zhang X, Xu J. Soft Matter, 2007, 3(4): 463 − 469  doi: 10.1039/B615260K

    29. [29]

      Qi X, Wang Z, Ma S, Wu L, Yang S, Xu J. Polymer, 2014, 55(5): 1183 − 1189  doi: 10.1016/j.polymer.2014.01.051

    30. [30]

      Baldrian J, Horky M, Sikora A, Steinharta M, Vlcek P, Amenitsch H, Bemstorff S. Polymer, 1999, 40(2): 439 − 445  doi: 10.1016/S0032-3861(98)00246-8

    31. [31]

      Dong J, Ozaki Y, Nakashima K. Macromolecules, 1997, 30(4): 1111 − 1117  doi: 10.1021/ma960693x

  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    4. [4]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    5. [5]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    8. [8]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    9. [9]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    10. [10]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    11. [11]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    12. [12]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    13. [13]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    14. [14]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    15. [15]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    16. [16]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    17. [17]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(0)
  • Abstract views(369)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return