Citation: Chen-zhi Yao, Xiao-rui Wang, Jin-ming Hu, Shi-yong Liu. Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes[J]. Acta Polymerica Sinica, ;2019, 50(6): 553-566. doi: 10.11777/j.issn1000-3304.2019.19031 shu

Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes

  • Corresponding author: Shi-yong Liu, sliu@ustc.edu.cn
  • Received Date: 10 February 2019
    Revised Date: 26 March 2019
    Available Online: 26 April 2019

  • Polymersomes, also referred to as polymer vesicles, are self-assembled from amphiphilic synthetic polymers, representing a type of hollow nanostructures containing aqueous lumens enclosed by bilayer membranes. This unique hollow and compartmentalized structure has been extensively used in the fabrication of artificial cells, drug carriers, and nanoreactors. Albeit more stable than liposomes, polymersomes exhibit relatively low permeability toward macromolecules, small molecules, ions, and even water molecules. This drawback remarkably hampers the biomedical applications of polymersomes. Thus, it is of crucial importance to regulate the permeability of polymersomes while maintaining structural integrity. Although a number of methods have been proposed to enhance the permeability of polymersomes such as the fabrication of stimuli-responsive polymersomes and the introduction of channel proteins, these procedures suffer from either tedious protocols or disruption of the vesicular structures. In this feature article, we summarize our recent achievements in the (ir)reversible regulation of the permeability of polymersomes. First, we conceived a new concept, termed as " traceless” cross-linking, to synergistically stabilize and permeate polymersomes. This concept originates from photoresponsive polymersomes, in which we found that the photo-caged primary amines underwent inter/intrachain amidation reactions other than protonation reactions within the initially hydrophobic bilayer membranes. Moreover, this robust strategy can be readily extended to other bio-related triggering events such as enzyme and redox. Notably, " traceless” cross-linking generally led to irreversible chemical cross-linking of polymersomes. Thus, in the following section, we showcased the representative examples in reversible modulation the permeability of polymersomes by taking advantage of cooperative noncovalent interactions. These new methodologies successfully resolve the dilemma of the structural stability and bilayer permeability of polymersomes and can be used for the fabrication of smart nanocarriers and nanoreactors. Finally, we give a brief summary and outlook of this emerging field.
  • 加载中
    1. [1]

      Hill J P, Jin W S, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science, 2004, 304(5676): 1481 − 1483  doi: 10.1126/science.1097789

    2. [2]

      Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547): 1684 − 1688  doi: 10.1126/science.1063187

    3. [3]

      Marguet M, Bonduelle C, Lecommandoux S. Chem Soc Rev, 2013, 42(2): 512 − 529  doi: 10.1039/C2CS35312A

    4. [4]

      Checot F, Lecommandoux S, Gnanou Y, Klok H A. Angew Chem Int Ed, 2002, 41(8): 1339 − 1343  doi: 10.1002/1521-3773(20020415)41:8<>1.0.CO;2-M

    5. [5]

      Vanhest J C M, Delnoye D A P, Baars M W P L, Vangenderen M H P, Meijer E W. Science, 1995, 268(5217): 1592 − 1595  doi: 10.1126/science.268.5217.1592

    6. [6]

      Du J Z, O’Reilly R K. Chem Soc Rev, 2011, 40(5): 2402 − 2416  doi: 10.1039/c0cs00216j

    7. [7]

      Zhu J H, Zhang S Y, Zhang K, Wang X J, Mays J W, Wooley K L, Pochan D J. Nat Commun, 2013, 4: 2297  doi: 10.1038/ncomms3297

    8. [8]

    9. [9]

      Bai Y, Xie F Y, Tian W. Chinese J Polym Sci, 2018, 36(3): 406 − 416  doi: 10.1007/s10118-018-2086-y

    10. [10]

      Chen S L, Shi P F, Zhang W Q. Chinese J Polym Sci, 2017, 35(4): 455 − 479  doi: 10.1007/s10118-017-1907-8

    11. [11]

      Feng X R, Ding J X, Gref R, Chen X S. Chinese J Polym Sci, 2017, 35(6): 693 − 699  doi: 10.1007/s10118-017-1932-7

    12. [12]

      Gan Y A, Wang Z D, Lu Z X, Shi Y, Tan H Y, Yan C F. Chinese J Polym Sci, 2018, 36(6): 728 − 735  doi: 10.1007/s10118-018-2066-2

    13. [13]

      Jing X W, Huang Z Y, Lu H S, Wang B G. Chinese J Polym Sci, 2018, 36(1): 18 − 24  doi: 10.1007/s10118-018-2008-z

    14. [14]

      Li X X, Huo X, Han H J, Lin S L. Chinese J Polym Sci, 2017, 35(11): 1363 − 1372  doi: 10.1007/s10118-017-1963-0

    15. [15]

      Liu D, Wang Y Y, Sun Y C, Han Y Y, Cui J, Jiang W. Chinese J Polym Sci, 2018, 36(7): 888 − 896  doi: 10.1007/s10118-018-2106-y

    16. [16]

      Lu B B, Wei L L, Meng G H, Hou J, Liu Z Y, Guo X H. Chinese J Polym Sci, 2017, 35(8): 924 − 938  doi: 10.1007/s10118-017-1947-0

    17. [17]

      Lu X J, Yang X Y, Meng Y, Li S Z. Chinese J Polym Sci, 2017, 35(4): 534 − 546  doi: 10.1007/s10118-017-1916-7

    18. [18]

      Lyu X L, Pan H B, Shen Z H, Fan X H. Chinese J Polym Sci, 2018, 36(7): 811 − 821  doi: 10.1007/s10118-018-2115-x

    19. [19]

      Meng F D, Ni Y X, Ji S F, Fu X H, Wei Y H, Sun J, Li Z B. Chinese J Polym Sci, 2017, 35(10): 1243 − 1252  doi: 10.1007/s10118-017-1959-9

    20. [20]

      Xu M M, Liu R J, Yan Q. Chinese J Polym Sci, 2018, 36(3): 347 − 365  doi: 10.1007/s10118-018-2080-4

    21. [21]

      Xu Y L, Qu A T, Ma R J, Li A, Zhang Z K, Shang Z Q, Zhang Y F, Bu L X, An Y L. Chinese J Polym Sci, 2018, 36(11): 1262 − 1268  doi: 10.1007/s10118-018-2149-0

    22. [22]

      Zhang W M, Zhang J, Qiao Z, Yin J. Chinese J Polym Sci, 2018, 36(3): 273 − 287  doi: 10.1007/s10118-018-2035-9

    23. [23]

      Zheng C X, Zhao Y, Liu Y. Chinese J Polym Sci, 2018, 36(3): 322 − 346  doi: 10.1007/s10118-018-2078-y

    24. [24]

      Wang X R, Liu G H, Hu J M, Zhang G Y, Liu S Y. Angew Chem Int Ed, 2014, 53(12): 3138 − 3142  doi: 10.1002/anie.201310589

    25. [25]

      Discher D E, Ortiz V, Srinivas G, Klein M L, Kim Y, David C A, Cai S S, Photos P, Ahmed F. Prog Polym Sci, 2007, 32(8-9): 838 − 857  doi: 10.1016/j.progpolymsci.2007.05.011

    26. [26]

      Meng F H, Zhong Z Y, Feijen J. Biomacromolecules, 2009, 10(2): 197 − 209  doi: 10.1021/bm801127d

    27. [27]

      Wang F Y K, Xiao J G, Chen S, Sun H, Yang B, Jiang J H, Zhou X, Du J Z. Adv Mater, 2018, 30(17): 1705674  doi: 10.1002/adma.v30.17

    28. [28]

      Xiao Y F, Sung H, Du J Z. J Am Chem Soc, 2017, 139(22): 7640 − 7647  doi: 10.1021/jacs.7b03219

    29. [29]

      Wilson D A, Nolte R J M, van Hest J C M. Nat Chem, 2012, 4(4): 268 − 274  doi: 10.1038/nchem.1281

    30. [30]

      Vriezema D M, Garcia P M L, Oltra N S, Hatzakis N S, Kuiper S M, Nolte R J M, Rowan A E, van Hest J C M. Angew Chem Int Ed, 2007, 46(39): 7378 − 7382  doi: 10.1002/(ISSN)1521-3773

    31. [31]

      Wang X R, Hu J M, Liu G H, Tian J, Wang H J, Gong M, Liu S Y. J Am Chem Soc, 2015, 137(48): 15262 − 15275  doi: 10.1021/jacs.5b10127

    32. [32]

      Yao C, Wang X, Liu G, Hu J, Liu S. Macromolecules, 2016, 49(21): 8282 − 8295  doi: 10.1021/acs.macromol.6b01374

    33. [33]

      Zhu K, Liu G, Zhang G, Hu J, Liu S. Macromolecules, 2018, 51(21): 8530 − 8538  doi: 10.1021/acs.macromol.8b01653

    34. [34]

      Sun Z, Liu G, Hu J, Liu S. Biomacromolecules, 2018, 19(6): 2071 − 2081  doi: 10.1021/acs.biomac.8b00253

    35. [35]

      Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Acc Chem Res, 2011, 44(10): 1039 − 1049  doi: 10.1021/ar200036k

    36. [36]

      Bian B, Zhang Y Y, Dong Y C, Wu F, Wang C, Wang S, Xu Y, Liu D S. Sci China Chem, 2018, 61(12): 1568 − 1571  doi: 10.1007/s11426-018-9309-5

    37. [37]

      Wu S X, Li J, Liang H, Wang L P, Chen X, Jin G X, Xu X P, Yang H H. Sci China Chem, 2017, 60(5): 628 − 634  doi: 10.1007/s11426-016-0351-5

    38. [38]

      Xiao J G, Hu Y, Du J Z. Sci China Chem, 2018, 61(5): 569 − 575  doi: 10.1007/s11426-017-9209-3

    39. [39]

      Yang S, Luan Z L, Gao C, Yu J J, Qu D H. Sci China Chem, 2018, 61(3): 306 − 310  doi: 10.1007/s11426-017-9104-x

    40. [40]

      Zhang Y Y, Li M, Li Z H, Li Q, Aldalbahi A, Shi J Y, Wang L H, Fan C H, Zuo X L. Sci China Chem, 2017, 60(11): 1474 − 1480  doi: 10.1007/s11426-017-9036-0

    41. [41]

      Zhou Y B, Liu H X, Zhao N, Wang Z M, Michael M Z, Xie N, Tang B Z, Tang Y H. Sci China Chem, 2018, 61(8): 892 − 897  doi: 10.1007/s11426-018-9287-x

    42. [42]

      Discher D E, Eisenberg A. Science, 2002, 297(5583): 967 − 973  doi: 10.1126/science.1074972

    43. [43]

      Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W, Hunziker P. Nano Lett, 2006, 6(10): 2349 − 2353  doi: 10.1021/nl0619305

    44. [44]

      Kim K T, Cornelissen J J L M, Nolte R J M, van Hest J C M. Adv Mater, 2009, 21(27): 2787 − 2791  doi: 10.1002/adma.200900300

    45. [45]

      Amstad E, Kim S H, Weitz D A. Angew Chem Int Ed, 2012, 51(50): 12499 − 12503  doi: 10.1002/anie.201206531

    46. [46]

      Hu J M, Zhang G Q, Liu S Y. Chem Soc Rev, 2012, 41(18): 5933 − 5949  doi: 10.1039/c2cs35103j

    47. [47]

      Yan Q, Wang J B, Yin Y W, Yuan J Y. Angew Chem Int Ed, 2013, 52(19): 5070 − 5073  doi: 10.1002/anie.201300397

    48. [48]

      Koide A, Kishimura A, Osada K, Jang W D, Yamasaki Y, Kataoka K. J Am Chem Soc, 2006, 128(18): 5988 − 5989  doi: 10.1021/ja057993r

    49. [49]

      Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N. J Am Chem Soc, 2013, 135(24): 9204 − 9212  doi: 10.1021/ja404175x

    50. [50]

      Chambon P, Blanazs A, Battaglia G, Armes S P. Langmuir, 2012, 28(2): 1196 − 1205  doi: 10.1021/la204539c

    51. [51]

      Read E S, Armes S P. Chem Commun, 2007, 43(29): 3021 − 3035

    52. [52]

      Habault D, Zhang H J, Zhao Y. Chem Soc Rev, 2013, 42(17): 7244 − 7256  doi: 10.1039/c3cs35489j

    53. [53]

      Zhu K, Deng Z, Liu G, Hu J, Liu S. Macromolecules, 2017, 50(3): 1113 − 1125  doi: 10.1021/acs.macromol.6b02162

    54. [54]

      Deng H, Zhong Y, Du M, Liu Q, Fan Z, Dai F, Zhang X. Theranostics, 2014, 4(9): 904 − 918  doi: 10.7150/thno.9448

    55. [55]

      He J, Huang X, Li Y C, Liu Y, Babu T, Aronova M A, Wang S, Lu Z, Chen X, Nie Z. J Am Chem Soc, 2013, 135(21): 7974 − 7984  doi: 10.1021/ja402015s

    56. [56]

      Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, Leapman R D, Nie Z, Chen X. Angew Chem Int Ed, 2013, 52(52): 13958 − 13964  doi: 10.1002/anie.201308986

    57. [57]

      Wang C, Zhang G Y, Liu G H, Hu J M, Liu S Y. J Control Release, 2017: 259149 − 159

    58. [58]

      Marguet M, Sandre O, Lecommandoux S. Langmuir, 2012, 28(4): 2035 − 2043  doi: 10.1021/la204018w

    59. [59]

      Xu W, Ledin P A, Iatridi Z, Tsitsilianis C, Tsukruk V V. Angew Chem Int Ed, 2016, 55(16): 4908 − 4913  doi: 10.1002/anie.201600383

    60. [60]

      Li Y M, Liu G H, Wang X R, Hu J M, Liu S Y. Angew Chem Int Ed, 2016, 55(5): 1760 − 1764  doi: 10.1002/anie.201509401

    61. [61]

      Ding Y, Kang Y T, Zhang X. Chem Commun, 2015, 51(6): 996 − 1003  doi: 10.1039/C4CC05878J

    62. [62]

      Hotamisligil G S. Nature, 2006, 444(7121): 860 − 867  doi: 10.1038/nature05485

    63. [63]

      Circu M L, Aw T Y. Free Radical Biol Med, 2010, 48(6): 749 − 762  doi: 10.1016/j.freeradbiomed.2009.12.022

    64. [64]

      Deng Z, Qian Y, Yu Y, Liu G, Hu J, Zhang G, Liu S. J Am Chem Soc, 2016, 138(33): 10452 − 10466  doi: 10.1021/jacs.6b04115

    65. [65]

      Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. J Control Release, 2011, 152(1): 2 − 12  doi: 10.1016/j.jconrel.2011.01.030

    66. [66]

      Deng Z Y, Yuan S, Xu R X, Liang H J, Liu S Y. Angew Chem Int Ed, 2018, 57(29): 8896 − 8900  doi: 10.1002/anie.201802909

    67. [67]

      Che H L, van Hest J C M. J Mater Chem, 2016, 4(27): 4632 − 4647  doi: 10.1039/C6TB01163B

    68. [68]

      Che H L, Cao S P, van Hest J C M. J Am Chem Soc, 2018, 140(16): 5356 − 5359  doi: 10.1021/jacs.8b02387

    69. [69]

      Yan Q, Zhou R, Fu C K, Zhang H J, Yin Y W, Yuan J Y. Angew Chem Int Ed, 2011, 50(21): 4923 − 4927  doi: 10.1002/anie.v50.21

    70. [70]

      Feng A C, Zhan C B, Yan Q, Liu B W, Yuan J Y. Chem Commun, 2014, 50(64): 8958 − 8961  doi: 10.1039/C4CC03156C

    71. [71]

      Hu X L, Zhai S D, Liu G H, Xing D, Liang H J, Liu S Y. Adv Mater, 2018, 30(21): 1706307  doi: 10.1002/adma.v30.21

    72. [72]

      Liu G H, Shi G H, Sheng H Y, Jiang Y Y, Liang H J, Liu S Y. Angew Chem Int Ed, 2017, 56(30): 8686 − 8691  doi: 10.1002/anie.v56.30

    73. [73]

      Liu G H, Zhang G F, Hu J M, Wang X R, Zhu M Q, Liu S Y. J Am Chem Soc, 2015, 137(36): 11645 − 11655  doi: 10.1021/jacs.5b05060

    74. [74]

      Hu X L, Liu G H, Li Y, Wang X R, Liu S Y. J Am Chem Soc, 2015, 137(1): 362 − 368  doi: 10.1021/ja5105848

    75. [75]

      Liu G H, Wang X R, Hu J M, Zhang G Y, Liu S Y. J Am Chem Soc, 2014, 136(20): 7492 − 7497  doi: 10.1021/ja5030832

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    16. [16]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    17. [17]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    18. [18]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    19. [19]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(0)
  • Abstract views(125)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return