Citation: Xiao-xia Wang, Lin-ling Li, Lai Wei, Qi Xue, Dong-shan Zhou. Crystallization of Poly(L-lactide) Oligomer Confined in Alumina Nanopores[J]. Acta Polymerica Sinica, ;2019, 50(8): 841-849. doi: 10.11777/j.issn1000-3304.2019.19024 shu

Crystallization of Poly(L-lactide) Oligomer Confined in Alumina Nanopores

  • Corresponding author: Lin-ling Li, llli@nju.edu.cn Dong-shan Zhou, dzhou@nju.edu.cn
  • Received Date: 29 January 2019
    Revised Date: 2 March 2019
    Available Online: 18 April 2019

  • The glass transition, crystallization, and melting behaviors of oligomer poly(L-lactide) (PLLA) confined in anodic aluminum oxide (AAO) nanopores were invesitgated by calorimetry. Compared with the bulk counterpart, PLLA located inside AAO nanopores showed frustrated crystallization during the cooling process, and the crystallization enthalpy gradually decreased with the reduction of pore size. In large nanopores, the crystallization peaks of PLLA nanorods were very close to that of bulk sample, which indicated the predomination of heterogeneous nucleation. Meanwhile, the nonisothermal crystallization results displayed that temperature dependence of nucleation rate of PLLA in nanopores was weaker than that in bulk state. As the diameter of nanopore was smaller than 28 nm, the crystallization peak disappeared. The glass state of PLLA nanorods exhibited double glass transition temperatures (Tgs), the higher Tg attributed to chains in the interfacial adsorbed layer adjacent to pore walls, and the lower Tg belonged to chains in the pore center. The two Tgs showed opposite pore size dependences—the lower one decreased with the reduction of pore size, while the higher one increased. During the heating process, PLLA confined in nanopores showed the pronounced cold crystallization phenomenon, which took place at higher temperatures and the peak was much broader than that of bulk state, which could be ascribed to the supressed nucleation rate, the poor nucleation activity, and the broad nucleation dispersion in PLLA nanorods. Apart form the influence of nucleation, hetergeneous chain mobilities in nanopores also played an important role. Due to the existence of adsorbed layer, surface induced nucleation was hindered. Interestingly, by the nonisothermal crystallization experiments, PLLA chains in the interfacial layer and pore center displayed independent cold crystallization behaviors, and the latter happened at the higher temperatures. Finally, the interfacial effect gradually dominated as the pore size decreased. PLLA crystals formed in small nanopores became unstable, obvious melting-recrystallization phenomena occurred, and the crystallinity and melting temperature of PLLA crystals were lower in smaller nanopores.
  • 加载中
    1. [1]

      Keddie J L, Jones R A L, Cory R A. Faraday Discuss, 1994, 98: 219 − 230  doi: 10.1039/fd9949800219

    2. [2]

      Chai Y, Salez T, McGraw J D, Benzaquen M, Dalnoki-Veress K, Raphael E, Forrest J A. Science, 2014, 343(6174): 994 − 999  doi: 10.1126/science.1244845

    3. [3]

      Fakhraai Z, Forrest J A. Science, 2008, 319(5863): 600 − 604  doi: 10.1126/science.1151205

    4. [4]

      O'Connell P A, McKenna G B. Science, 2005, 307(5716): 1760 − 1763  doi: 10.1126/science.1105658

    5. [5]

      Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C. Science, 2010, 328(5986): 1676 − 1679  doi: 10.1126/science.1184394

    6. [6]

      Jones R L, Kumar S K, Ho D L, Briber R M, Russell T P. Nature, 1999, 400(6740): 146 − 149  doi: 10.1038/22080

    7. [7]

      Rowland H D, King W P, Pethica J B, Cross G L W. Science, 2008, 322(5902): 720 − 724  doi: 10.1126/science.1157945

    8. [8]

      Priestley R D, Ellison C J, Broadbelt L J, Torkelson J M. Science, 2005, 309(5733): 456 − 459  doi: 10.1126/science.1112217

    9. [9]

      Yang Rong(杨榕), Li Hongmei(李红梅), Jiang Jing(姜菁), Zhou Dongshan(周东山). Acta Polymerica Sinica(高分子学报), 2018, (9): 1228 − 1235  doi: 10.11777/j.issn1000-3304.2018.18024

    10. [10]

      Mijangos C, Hernández R, Martín J. Prog Polym Sci, 2016, 54-55: 148 − 182  doi: 10.1016/j.progpolymsci.2015.10.003

    11. [11]

      Michell R M, Mueller A J. Prog Polym Sci, 2016, 54-55: 183 − 213  doi: 10.1016/j.progpolymsci.2015.10.007

    12. [12]

      Mary Michell R, Blaszczyk-Lezak I, Mijangos C, Mueller A J. J Polym Sci, Part B: Polym Phys, 2014, 52(18): 1179 − 1194  doi: 10.1002/polb.23553

    13. [13]

      Michell R M, Blaszczyk-Lezak I, Mijangos C, Mueller A J. Polymer, 2013, 54(16): 4059 − 4077  doi: 10.1016/j.polymer.2013.05.029

    14. [14]

      Duran H, Steinhart M, Butt H J, Floudas G. Nano Lett, 2011, 11(4): 1671 − 1675  doi: 10.1021/nl200153c

    15. [15]

      Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G. Soft Matter, 2013, 9(9): 2621 − 2628  doi: 10.1039/c2sm27618f

    16. [16]

      Suzuki Y, Duran H, Akram W, Steinhart M, Floudas G, Butt H J. Soft Matter, 2013, 9(38): 9189 − 9198  doi: 10.1039/c3sm50907a

    17. [17]

      Shi G Y, Liu G M, Su C, Chen H M, Chen Y, Su Y L, Muller A J, Wang D J. Macromolecules, 2017, 50(22): 9015 − 9023  doi: 10.1021/acs.macromol.7b02284

    18. [18]

      Li L L, Liu J W, Qin L L, Zhang C, Sha Y, Jiang J, Wang X L, Chen W, Xue G, Zhou D S. Polymer, 2017, 110: 273 − 283  doi: 10.1016/j.polymer.2016.12.081

    19. [19]

      Guan Y, Liu G M, Ding G Q, Yang T Y, Mueller A J, Wang D J. Macromolecules, 2015, 48(8): 2526 − 2533  doi: 10.1021/acs.macromol.5b00108

    20. [20]

      Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn-Albrecht T. Phys Rev Lett, 2006, 97(2): 027801  doi: 10.1103/PhysRevLett.97.027801

    21. [21]

      Guan Y, Liu G M, Gao P Y, Li L, Ding G Q, Wang D J. ACS Macro Lett, 2013, 2(3): 181 − 184  doi: 10.1021/mz300592v

    22. [22]

      Wu H, Wang W, Huang Y, Su Z H. Macromol Rapid Commun, 2009, 30(3): 194 − 198  doi: 10.1002/marc.v30:3

    23. [23]

      Wu Hui(吴慧), Wang Wei(王巍), Su Zhaohui(苏朝晖). Acta Polymerica Sinica(高分子学报), 2009, (5): 425 − 429

    24. [24]

      Su Cui(苏萃), Shi Guangyu(施光宇), Wang Dujin(王笃金), Liu Guoming(刘国明). Acta Polymerica Sinica(高分子学报), 2019, 50(3): 281 − 290

    25. [25]

      Su C, Shi G Y, Li X L, Zhang X Q, Mueller A J, Wang D J, Liu G M. Macromolecules, 2018, 51(23): 9484 − 9493  doi: 10.1021/acs.macromol.8b01801

    26. [26]

      Yao Y, Sakai T, Steinhart M, Butt H J, Floudas G. Macromolecules, 2016, 49(16): 5945 − 5954  doi: 10.1021/acs.macromol.6b01406

    27. [27]

      Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W. Macromolecules, 2007, 40(18): 6617 − 6623  doi: 10.1021/ma070994e

    28. [28]

      Sun X L, Fang Q Q, Li H H, Ren Z J, Yang S K. Langmuir, 2016, 32(13): 3269 − 3275  doi: 10.1021/acs.langmuir.6b00251

    29. [29]

      Mi C, Zhou J D, Ren Z J, Li H H, Sun X L, Yan S K. Polym Chem, 2016, 7(2): 410 − 417  doi: 10.1039/C5PY01532D

    30. [30]

      Li L L, Zhou D S, Huang D H, Xue G. Macromolecules, 2014, 47(1): 297 − 303  doi: 10.1021/ma4020017

    31. [31]

      Li L L, Chen J, Deng W J, Zhang C, Sha Y, Cheng Z, Xue G, Zhou D S. J Phys Chem B, 2015, 119(15): 5047 − 5054  doi: 10.1021/jp511248q

    32. [32]

      Teng C, Li L L, Wang Y, Wang R, Chen W, Wang X L, Xue G. J Chem Phys, 2017, 146(20): 203319  doi: 10.1063/1.4978230

    33. [33]

      Zhang C, Li L L, Wang X L, Xue G. Macromolecules, 2017, 50(4): 1599 − 1609  doi: 10.1021/acs.macromol.6b02469

    34. [34]

      Vanroy B, Wubbenhorst M, Napolitano S. ACS Macro Lett, 2013, 2(2): 168 − 172  doi: 10.1021/mz300641x

  • 加载中
    1. [1]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    2. [2]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    3. [3]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    4. [4]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    5. [5]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    6. [6]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    7. [7]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    8. [8]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    9. [9]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    10. [10]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    11. [11]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    12. [12]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    13. [13]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    16. [16]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    17. [17]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    18. [18]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    19. [19]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    20. [20]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

Metrics
  • PDF Downloads(0)
  • Abstract views(106)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return