Citation: Lei Sun, Jing-nan Zhao, Wei-heng Huang, Wen-hua Zhang, Liang-bin Li. Effect of Solution Concentration on Order-disorder Transition of Molecular Chains in Conjugated Polymer Solutions[J]. Acta Polymerica Sinica, ;2019, 50(8): 834-840. doi: 10.11777/j.issn1000-3304.2019.19023 shu

Effect of Solution Concentration on Order-disorder Transition of Molecular Chains in Conjugated Polymer Solutions

  • Corresponding author: Wen-hua Zhang, zhangwh@ustc.edu.cn
  • Received Date: 29 January 2019
    Revised Date: 27 February 2019
    Available Online: 17 April 2019

  • The concentration dependence of chain conformation and disorder-order transition of poly(3-hexylthiophene-2,5-diyl) (P3HT) in toluene solution at room temperature are investigated by multiple characterizations including photoluminescence spectroscopy (PL), UV-Vis absorption spectroscopy (UV-Vis), synchrotron radiation X-ray scattering technique (SAXS), and atomic force microscopy (AFM). The results indicate a critical concentration of ~ 5 mg/mL, at which the interchain interaction and chain aggregation state vary pronouncedly. In the dilute solution (< 5 mg/mL), P3HT chains maintain as independent random coils with negligible interchain interactions despite of regional segmental aggregate formation within the coils as revealed by PL and SAXS measurements. With the solution concentration exceeding the critical value of 5 mg/mL, the chain collapse takes place and the radius of gyration of the molecular chains decreases due to the strengthened π-π couplings among coils. The higher concentration of the solution leads to higher interchain entanglement and more local formation of rod-like segmental aggregates. The amount of the local segment aggregation is found to positively correlated with the concentration, while the radius of gyration and chain conformation exhibit nearly no variation any more at the concentrated solutions. SAXS data display a decreased power law of the concentrated solutions with respect to the dilute solutions, suggesting a lower dimension of the form factor and an improved interchain aggregation in the concentrated solution. This is in good agreement with the UV absorption and PL results. This concentration dependence of the regional chain disorder-order transition in P3HT/toluene solution is further verified to exert great influence on the final crystalline morphologies of the spin-casted films. The segmental aggregated orderings in solution can be effectively transferred to the thin films through namely the " memory effect” during the solution processing, resulting in nanowire structures and higher crystallinity of the films for the higher concentration solution.
  • 加载中
    1. [1]

      Liu X C, Nian L, Gao K, Zhang L J, Qing L C, Wang Z, Ying L, Xie Z Q, Ma Y G, Cao Y, Liu F, Chen J W. J Mater Chem A, 2017, 5(33): 17619 − 17631  doi: 10.1039/C7TA05583H

    2. [2]

      Lu G H, Li L G, Yang X N. Adv Mater, 2007, 19(21): 3594 − 3598  doi: 10.1002/(ISSN)1521-4095

    3. [3]

      Marrocchi A, Lanari D, Facchetti A, Vaccaro L. Energy Environ Sci, 2012, 5(9): 8457 − 8474  doi: 10.1039/c2ee22129b

    4. [4]

      Wang Y, Cui H N, Zhu M J, Qiu F, Peng J, Lin Z Q. Macromolecules, 2017, 50(24): 9674 − 9682  doi: 10.1021/acs.macromol.7b02126

    5. [5]

      Zhu M J, Kim H, Jang Y J, Park S, Ryu D Y, Kim K, Tang P, Qiu F, Kim D H, Peng J. J Mater Chem A, 2016, 4(47): 18432 − 18443  doi: 10.1039/C6TA08181A

    6. [6]

      Shi Y, Liu J, Yang Y. J Appl Phys, 2000, 87(9): 4254 − 4263  doi: 10.1063/1.373062

    7. [7]

      Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev, 2015, 115(23): 12666 − 12731  doi: 10.1021/acs.chemrev.5b00098

    8. [8]

      Jung B, Kim K, Eom Y, Kim W. ACS Appl Mater Interfaces, 2015, 7(24): 13342 − 13349  doi: 10.1021/acsami.5b01658

    9. [9]

      Peet J, Soci C, Coffin R C, Nguyen T Q, Mikhailovsky A, Moses D, Bazan G C. Appl Phys Lett, 2006, 89(25): 252105  doi: 10.1063/1.2408661

    10. [10]

      Shahar C, Dutta S, Weissman H, Shimon L J, Ott H, Rybtchinski B. Angew Chem, 2016, 128(1): 187 − 190  doi: 10.1002/ange.201507659

    11. [11]

      Erdemir D, Lee A Y, Myerson A S. Acc Chem Res, 2009, 42(5): 621 − 629  doi: 10.1021/ar800217x

    12. [12]

      Gebauer D, Kellermeier M, Gale J D, Bergström L, Cölfen H. Chem Soc Rev, 2014, 43(7): 2348 − 2371  doi: 10.1039/C3CS60451A

    13. [13]

      Panzer F, Bässler H, Köhler A. J Phys Chem Lett, 2016, 8(1): 114 − 125

    14. [14]

      Reichenberger M, Kroh D, Matrone G M, Schötz K, Pröller S, Filonik O, Thordardottir M E, Herzig E M, Bässler H, Stingelin N, köhler A. J Polym Sci, Part B: Polym Phys, 2018, 56(6): 532 − 542  doi: 10.1002/polb.24562

    15. [15]

      Schwartz B J. Annu Rev Phys Chem, 2003, 54: 141 − 172  doi: 10.1146/annurev.physchem.54.011002.103811

    16. [16]

      Mukherji D, Wagner M, Watson M D, Winzen S, de Oliveira T E, Marques C M, Kremer K. Soft Matter, 2017, 13(12): 2292 − 2294  doi: 10.1039/C7SM00041C

    17. [17]

      Zhao Y, Yuan G X, Roche P, Leclerc M. Polymer, 1995, 36(11): 2211 − 2214  doi: 10.1016/0032-3861(95)95298-F

    18. [18]

      Zhou K, Liu J G, Li M G, Yu X H, Xing R B, Han Y C. J Phys Chem C, 2015, 119(4): 1729 − 1736  doi: 10.1021/jp511370x

    19. [19]

      Peng Y, He Z Q, Li H, Liang C J. Polymer, 2016, 98(1): 61 − 69

    20. [20]

      Traiphol R, Sanguansat P, Srikhirin T, Kerdcharoen T, Osotchan T. Macromolecules, 2006, 39(3): 1165 − 1172  doi: 10.1021/ma052512+

    21. [21]

      Cheng P, Yan C, Li Y, Ma W, Zhan X, Science E. Energy Environ Sci, 2015, 8(8): 2357 − 2364  doi: 10.1039/C5EE01838B

    22. [22]

      Nguyen T Q, Doan V, Schwartz B J. J Chem Phys, 1999, 110(8): 4068 − 4078  doi: 10.1063/1.478288

    23. [23]

      Grell M, Bradley D, Long X, Chamberlain T, Inbasekaran M, Woo E, Soliman M. Acta Polym, 1998, 49(8): 439 − 444  doi: 10.1002/(ISSN)1521-4044

    24. [24]

      Greenham N C, Peng X, Alivisatos A P. Phys Rev B, 1996, 54(24): 17628  doi: 10.1103/PhysRevB.54.17628

    25. [25]

      Wang J, Wang D, Miller E K, Moses D, Bazan G C, Heeger A J. Macromolecules, 2000, 33(14): 5153 − 5158  doi: 10.1021/ma000081j

    26. [26]

      Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y S, Wei J. Adv Funct Mater, 2009, 19(6): 894 − 904  doi: 10.1002/adfm.v19:6

    27. [27]

      Ridolfi G, Favaretto L, Barbarella G, Samorì P, Camaioni N. J Mater Chem, 2005, 15(17): 1704 − 1707  doi: 10.1039/b418109c

    28. [28]

      Clark J, Silva C, Friend R H, Spano F C. Phys Rev Lett, 2007, 98(20): 206406  doi: 10.1103/PhysRevLett.98.206406

    29. [29]

      Kuei B, Gomez E D. Soft Matter, 2017, 13(1): 49 − 67  doi: 10.1039/C6SM00979D

    30. [30]

      Aime J, Bargain F, Fave J, Rawiso M, Schott M. J Chem Phys, 1988, 89(10): 6477 − 6483  doi: 10.1063/1.455367

    31. [31]

      Bauer B J, Hobbie E K, Becker M L J M. Macromolecules, 2006, 39(7): 2637 − 2642  doi: 10.1021/ma0527303

    32. [32]

      Li Y C, Chen K B, Chen H L, Hsu C S, Tsao C S, Chen J H, Chen S A. Langmuir, 2006, 22(26): 11009 − 11015  doi: 10.1021/la0612769

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    3. [3]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    4. [4]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    5. [5]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    8. [8]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    9. [9]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    10. [10]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    11. [11]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    12. [12]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    13. [13]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    14. [14]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    15. [15]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    16. [16]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    17. [17]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    18. [18]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(0)
  • Abstract views(282)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return