Citation: Jing Tian, Yin-ran Wang, Hong-ran Fu, Fang Guo. Copolymerization of Ethylene and Conjugated Dienes Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, ;2019, 50(8): 826-833. doi: 10.11777/j.issn1000-3304.2019.19020 shu

Copolymerization of Ethylene and Conjugated Dienes Catalyzed by Half-sandwich Scandium Complexes

  • Corresponding author: Fang Guo, guofang@dlut.edu.cn
  • Received Date: 25 January 2019
    Revised Date: 22 February 2019
    Available Online: 17 April 2019

  • The copolymerization of ethylene with conjugated dienes such as isoprene and butadiene catalyzed by the half-sandwich scandium complexes (C5Me4SiMe3)Sc(CH2C6H4NMe2-o)2 ( 1 ) and (C5Me4SiMe3) Sc(CH2SiMe3)2(THF) ( 2 ) has been detailedly studied. Microstructures and thermal properties of the copolymers obtained were characterized by NMR, GPC and DSC. Results showed that ethylene could be copolymerized with either isoprene or butadiene under 1.01 × 105 Pa of ethylene, and the copolymerization activity both reached up to 105 g polymer molSc−1 h−1 at room temperature. The ethylene-isoprene and ethylene-butadiene copolymers with controllable compositions (ethylene content = 32 mol% − 79 mol%), high molecular weight (Mn = 8.0 × 104 ~ 19.7 × 104), and narrow molecular weight distribution (Mw/Mn = 1.11 − 1.32) were readily obtained by changing the feed ratio of isoprene or butadiene. The structures of catalysts and conjugated dienes could exert significant effects on the stereoselectivity and comonomer distribution sequences in the resulting copolymers. For the copolymerization of ethylene and isoprene, scandium complex 1 afforded multiblock ethylene-isoprene copolymers with different isoprene contents but a predominant 3,4-structure. These copolymers exhibited a glass transition temperature (Tg, about −16 °C) and a melting temperature (Tm, 127 °C), which originated from the attributes of polyisoprene blocks and polyethylene blocks, respectively. Scandium complex 2 could give alternating ethylene-isoprene copolymers or random ethylene-isoprene copolymers with polyethylene blocks and isolated isoprene units at high or low amount of isoprene monomer used, and the isoprene in these copolymers mainly existed in 3,4-structure and trans-1,4-structure. The ethylene-isoprene alternating copolymers only showed a Tg at −46 °C, but as the isoprene content was lower than 32 mol%, Tm that derived from polyethylene blocks appeared at 130 °C while Tg of −46 °C still existed due to the ethylene-isoprene alternating structures. As for the copolymerization of ethylene and butadiene, both scandium complexes 1 and 2 afforded multiblock ethylene-butadiene copolymers with different butadiene contents and predominant cis-1,4-structure, whereas the random degree of sequence distributions in copolymers prepared by 2 was higher than that in copolymers prepared by 1 . Moreover, these ethylene-butadiene copolymers displayed Tgs (−98 °C) and Tms (71 − 125 °C) simultaneously, which were ascribed to polybutadiene blocks and polyethylene blocks, respectively.
  • 加载中
    1. [1]

      Woodman T J, Sarazin Y, Fink G, Hauschild K, Bochmann M. Macromolecules, 2005, 38: 3060 − 3067  doi: 10.1021/ma047454r

    2. [2]

      Ishihara T, Shiono T. J Am Chem Soc, 2005, 127: 5774 − 5775  doi: 10.1021/ja050987a

    3. [3]

      Tobisch S. J Mol Struct Theochem, 2006, 771: 171 − 179  doi: 10.1016/j.theochem.2006.03.036

    4. [4]

      Furukawa J. J Polym Sci, Part B: Polym Phys, 1972, 10: 3027 − 3036  doi: 10.1002/pol.1972.170101020

    5. [5]

      Soga K, Chen S I, Ohnishi R. Polym Bull, 1982, 8: 473 − 478  doi: 10.1007/BF00265270

    6. [6]

      Sun L, Lu Z, Lin S. J Polym Sci, Part B: Polym Phys, 1988, 26: 2113 − 2126

    7. [7]

      Mullhaupt R, Ovenall D W, Ittel S D. J Polym Sci, Part A: Polym Chem, 1988, 26: 2496 − 2499

    8. [8]

      Zhou Guangyuan(周光远), Huang Baotong(黄葆同), Jin Guoxin(金国新). Appl Chem(应用化学), 2001, (18): 125 − 127

    9. [9]

      Bruzzone M, Carbonaro A, Corno C. Makromol Chem, 1978, 179: 2173 − 2185  doi: 10.1002/macp.1978.021790906

    10. [10]

      Cucinella S, De Chirico A, Mazzei A. Eur Polym J, 1976, 12: 65 − 70  doi: 10.1016/0014-3057(76)90139-7

    11. [11]

      Natta G, Zambelli A, Pasquon I, Ciampelli F. Makromol Chem, 1964, 79: 161 − 168  doi: 10.1002/macp.1964.020790115

    12. [12]

      Kaminsky W, Schobohm M. Makromol Chem Macromol Symp, 1986, 4: 103 − 118  doi: 10.1002/(ISSN)1521-3900a

    13. [13]

      Barbotin F, Monteil V, Llauro M F, Boisson C, Spitz R. Macromolecules, 2000, 33: 8521 − 8523  doi: 10.1021/ma0012043

    14. [14]

      Thuilliez J, Monteil V, Spitz R, Boisson C. Angew Chem Int Ed, 2005, 44: 2593 − 2595  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Wu C J, Liu B, Lin F, Wang M Y, Cui D M. Angew Chem Int Ed, 2017, 56: 6975 − 6979  doi: 10.1002/anie.201702128

    16. [16]

      Rodrigues A S, Kirillov E, Vuillemin B, Razavi A, Carpentier J F. Polymer, 2008, 49: 2039 − 2045  doi: 10.1016/j.polymer.2008.02.043

    17. [17]

      Li X F, Nishiura M, Hu L H, Mori K, Hou Z M. J Am Chem Soc, 2009, 131: 13870 − 13882  doi: 10.1021/ja9056213

    18. [18]

      Du G X, Xue J P, Peng D Q, Yu C, Wang H H, Zhou Y N, Bi J J, Zhang S W, Dong Y P, Li X F. J Polym Sci, Part A: Polym Chem, 2015, 53: 2898 − 2907  doi: 10.1002/pola.v53.24

    19. [19]

      Ren X R, Guo F, Fu H R, Song Y Y, Li Y, Hou Z M. Polym Chem, 2018, 9: 1223 − 1233  doi: 10.1039/C8PY00039E

    20. [20]

      Luo Y, Baldamus J, Hou Z M. J Am Chem Soc, 2004, 126: 13910 − 13911  doi: 10.1021/ja046063p

    21. [21]

      Li X, Nishiura M, Mori K, Mashiko T, Hou Z M. Chem Commun, 2007, 4137–4139

    22. [22]

      Guo F, Nishiura M, Koshino H, Hou Z M. Macromolecules, 2011, 44: 6335 − 6344  doi: 10.1021/ma201271r

    23. [23]

      Chiem J C W, Tsai W M, Rausch M D. J Am Chem Soc, 1991, 113: 8570 − 8571  doi: 10.1021/ja00022a081

    24. [24]

      Meng Rui(孟蕊), Guo Fang(郭方), Shi Zhenghai(史正海), Li Yang(李杨). Acta Polymerica Sinica(高分子学报), 2015, (10): 1189 − 1195  doi: 10.11777/j.issn1000-3304.2015.15062

    25. [25]

      Shi Zhenghai(史正海), Meng Rui(孟蕊), Guo Fang(郭方). Acta Polymerica Sinica(高分子学报), 2014, (10): 1420 − 1427  doi: 10.11777/j.issn1000-3304.2014.14057

  • 加载中
    1. [1]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    2. [2]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    15. [15]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(0)
  • Abstract views(159)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return