Citation: Jia Tian, Wei-an Zhang. Construction and Applications of Well-defined Porphyrin-containing Polymers[J]. Acta Polymerica Sinica, ;2019, 50(7): 653-670. doi: 10.11777/j.issn1000-3304.2019.19018 shu

Construction and Applications of Well-defined Porphyrin-containing Polymers

  • Corresponding author: Wei-an Zhang, wazhang@ecust.edu.cn
  • Received Date: 25 January 2019
    Revised Date: 27 February 2019
    Available Online: 3 April 2019

  • Porphyrins and their derivatives have attracted much attention due to their unique properties and various functions, and have been widely used in energy, catalysis and biomedical fields. Porphyrin-containing polymers possess both porphyrin and polymeric characteristics, which have also aroused great interest. On the basis of functional porphyrin units, the well-defined porphyrin-containing polymers not only have a clear and specific macromolecular structure, but also have been endowed with a variety of novel and unique features. By modifying the porphyrin units into the initiators, monomers or chain transfer agents, well-defined functional porphyrin-containing polymers with specific structures could be efficiently constructed by ring-opening polymerization (ROP), atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization or the combination of other strategies such as click chemistry. These well-defined porphyrin-containing polymers including telechelic polymers, alternating copolymers, block copolymers, star polymers, supramolecular polymers, can self-assemble to diverse morphologies such as spherical micelles, vesicles, nanorods and wormlike-structures and possess great potential in photodynamic therapy. Particularly, porphyrin-containing alternating copolymers can be obtained by RAFT copolymerization of 4-vinylbenzyl-terminated tetraphenylporphyrin and maleimide isobutyl polyhedral oligomeric silsesquioxane (POSS). The steric hindrance of POSS significantly reduces the π-π stacking of porphyrin units, which remarkably improve the singlet oxygen quantum yield and the photodynamic therapy efficacy.
  • 加载中
    1. [1]

      Zhang W, Lai W Z, Cao R. Chem Rev, 2017, 117(4): 3717 − 3797  doi: 10.1021/acs.chemrev.6b00299

    2. [2]

      Ding Y B, Zhu W H, Xie Y S. Chem Rev, 2017, 117(4): 2203 − 2256  doi: 10.1021/acs.chemrev.6b00021

    3. [3]

      Hiroto S, Miyake Y, Shinokubo H. Chem Rev, 2017, 117(4): 2910 − 3043  doi: 10.1021/acs.chemrev.6b00427

    4. [4]

      Tanaka T, Osuka A. Chem Soc Rev, 2015, 44(4): 943 − 969  doi: 10.1039/C3CS60443H

    5. [5]

      Liu F, Zhang Y, Xu L, Zhang W A. Chem-Eur J, 2015, 21(14): 5540 − 5547  doi: 10.1002/chem.201405334

    6. [6]

      Wang C C, Liu L C, Cao H L, Zhang W A. Biomater Sci-UK, 2017, 5(2): 274 − 284  doi: 10.1039/C6BM00482B

    7. [7]

      Kim J H, Lee M, Lee J S, Park C B. Angew Chem Int Ed, 2012, 51(2): 517 − 520  doi: 10.1002/anie.201103244

    8. [8]

      Zhou Y M, Liang X L, Dai Z F. Nanoscale, 2016, 8(25): 12394 − 12405  doi: 10.1039/C5NR07849K

    9. [9]

      Liu K, Xing R R, Chen C J, Shen G Z, Yan L Y, Zou Q L, Ma G H, Mohwald H, Yan X H. Angew Chem Int Ed, 2015, 54(2): 500 − 505

    10. [10]

      Liu K, Xing R R, Li Y X, Zou Q L, Mohwald H, Yan X H. Angew Chem Int Ed, 2016, 55(40): 12503 − 12507  doi: 10.1002/anie.201606795

    11. [11]

      Zou Q L, Abbas M, Zhao L Y, Li S K, Shen G Z, Yan X H. J Am Chem Soc, 2017, 139(5): 1921 − 1927  doi: 10.1021/jacs.6b11382

    12. [12]

      Li S K, Zou Q L, Li Y X, Yuan C Q, Xing R R, Yan X H. J Am Chem Soc, 2018, 140(34): 10794 − 10802  doi: 10.1021/jacs.8b04912

    13. [13]

      Zhang W A, Muller A H E. Prog Polym Sci, 2013, 38(8): 1121 − 1162  doi: 10.1016/j.progpolymsci.2013.03.002

    14. [14]

      Wang D L, Jin Y, Zhu X Y, Yan D Y. Prog Polym Sci, 2017, 64: 114 − 153  doi: 10.1016/j.progpolymsci.2016.09.005

    15. [15]

      Zhang Jiawei(张佳玮), Ma Zhiyuan(马致远), Zhao Chuanzhuang(赵传壮), Yuan Jinying(袁金颖), Zhu Xiaoxia(朱晓夏). Acta Polymerica Sinica(高分子学报), 2018, (7): 864 − 877  doi: 10.11777/j.issn1000-3304.2018.18023

    16. [16]

      Takeuchi M, Tanaka S, Shinkai S. Chem Commun, 2005, 44: 5539 − 5541

    17. [17]

      Fukui T, Kawai S, Fujinuma S, Matsushita Y, Yasuda T, Sakurai T, Seki S, Takeuchi M, Sugiyasu K. Nat Chem, 2017, 9(5): 493 − 499  doi: 10.1038/nchem.2684

    18. [18]

      Tasdelen M A, Kahveci M U, Yagci Y. Prog Polym Sci, 2011, 36(4): 455 − 567  doi: 10.1016/j.progpolymsci.2010.10.002

    19. [19]

      Takamizu K, Inagaki A, Nomura K. ACS Macro Lett, 2013, 2(11): 980 − 984  doi: 10.1021/mz400455b

    20. [20]

      Fushimi Y, Koinuma M, Yasuda Y, Nomura K, Asano M S. Macromolecules, 2017, 50(5): 1803 − 1814  doi: 10.1021/acs.macromol.7b00047

    21. [21]

      Li Z Y, Wang H Y, Li C, Zhang X L, Wu X J, Qin S Y, Zhang X Z, Zhuo R X. J Polym Sci, Part A: Polym Chem, 2011, 49(1): 286 − 292  doi: 10.1002/pola.v49.1

    22. [22]

      Han K, Zhang J, Zhang W Y, Wang S B, Wu L M, Zhang C, Zhang X Z, Han H Y. ACS Nano, 2017, 11(3): 3178 − 3188  doi: 10.1021/acsnano.7b00216

    23. [23]

      Tian J, Xu L, Xue Y D, Jiang X Z, Zhang W A. Biomacromolecules, 2017, 18(12): 3992 − 4001  doi: 10.1021/acs.biomac.7b01037

    24. [24]

      Lu J W, Zhang W D, Yuan L, Ma W J, Li X, Lu W, Zhao Y, Chen G J. Macromol Biosci, 2014, 14(3): 340 − 346  doi: 10.1002/mabi.201300451

    25. [25]

      Zhang J L, Zhang Z K, Yu B, Wang C, Wu W, Jiang X Q. ACS Appl Mater Interfaces, 2016, 8(9): 5794 − 5803  doi: 10.1021/acsami.5b10876

    26. [26]

      Schappacher M, Deffieux A. J Am Chem Soc, 2011, 133(6): 1630 − 1633  doi: 10.1021/ja108821p

    27. [27]

      Schappacher M, Deffieux A. Macromolecules, 2011, 44(11): 4503 − 4510  doi: 10.1021/ma200521q

    28. [28]

      Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31(16): 5559 − 5562  doi: 10.1021/ma9804951

    29. [29]

      Xu L, Liu L C, Liu F, Cai H B, Zhang W A. Polym Chem-UK, 2015, 6(15): 2945 − 2954  doi: 10.1039/C5PY00039D

    30. [30]

      Zhou Q, Xu L, Liu F, Zhang W A. Polymer, 2016, 97: 323 − 334  doi: 10.1016/j.polymer.2016.04.056

    31. [31]

      Zhou Z J, Song J B, Nie L M, Chen X Y. Chem Soc Rev, 2016, 45(23): 6597 − 6626  doi: 10.1039/C6CS00271D

    32. [32]

      Lovell J F, Liu T W B, Chen J, Zheng G. Chem Rev, 2010, 110(5): 2839 − 2857  doi: 10.1021/cr900236h

    33. [33]

      Li X S, Kolemen S, Yoon J, Akkaya E U. Adv Funct Mater, 2017, 27(5): 1604053  doi: 10.1002/adfm.v27.5

    34. [34]

      Jin J Q, Zhu Y C, Zhang Z H, Zhang W A. Angew Chem Int Ed, 2018, 57(50): 16354 − 16358  doi: 10.1002/anie.201808811

    35. [35]

      Chen B L, Dai W B, He B, Zhang H, Wang X Q, Wang Y G, Zhang Q. Theranostics, 2017, 7(3): 538 − 558  doi: 10.7150/thno.16684

    36. [36]

      Dai Y L, Xu C, Sun X L, Chen X Y. Chem Soc Rev, 2017, 46(12): 3830 − 3852  doi: 10.1039/C6CS00592F

    37. [37]

      Qiu Wenxiu(邱文秀), Cheng Han(程翰), Zhang Xianzheng(张先正), Zhuo Renxi(卓仁禧). Acta Polymerica Sinica(高分子学报), 2018, (1): 32 − 44  doi: 10.11777/j.issn1000-3304.2018.17256

    38. [38]

      Xue Y, Tian J, Xu L, Liu Z, Shen Y, Zhang W. Eur Polym J, 2019, 110: 344 − 354  doi: 10.1016/j.eurpolymj.2018.11.033

    39. [39]

      Hijazi I, Jousselme B, Jegou P, Filoramo A, Campidelli S. J Mater Chem, 2012, 22(39): 20936 − 20942  doi: 10.1039/c2jm33714b

    40. [40]

      Wang X C, Wang H Q, Yang Y, He Y J, Zhang L, Li Y F, Li X Y. Macromolecules, 2010, 43(2): 709 − 715  doi: 10.1021/ma9023119

    41. [41]

      Sun C X, Ji S B, Li F, Xu H P. ACS Appl Mater Interfaces, 2017, 9(15): 12924 − 12929  doi: 10.1021/acsami.7b02367

    42. [42]

      Liu F, Zhang Y, Pan X W, Xu L, Xue Y D, Zhang W A. RSC Adv, 2016, 6(62): S7552 − S7562

    43. [43]

      Xu L, Liu L C, Liu F, Li W, Chen R B, Gao Y, Zhang W A. J Mater Chem B, 2015, 3(15): 3062 − 3071  doi: 10.1039/C5TB00276A

    44. [44]

      Jin R H. J Mater Chem, 2004, 14(3): 320 − 327  doi: 10.1039/b307439k

    45. [45]

      Li B S, Xu X J, Sun M H, Fu Y Q, Yu G, Liu Y Q, Bo Z S. Macromolecules, 2006, 39(1): 456 − 461  doi: 10.1021/ma051610s

    46. [46]

      Wan Y, Jia K, Li B S, Bo Z S, Xia A D. Sci China Ser B, 2009, 52(1): 56 − 63  doi: 10.1007/s11426-008-0157-6

    47. [47]

      Liu Y J, Guo X, Xiang N, Zhao B, Huang H, Li H, Shen P, Tan S T. J Mater Chem, 2010, 20(6): 1140 − 1146  doi: 10.1039/B916935K

    48. [48]

      Nawaz M H, Liu J, Liu F, Wang X S, Zhang W A. Mater Lett, 2013, 91: 71 − 74  doi: 10.1016/j.matlet.2012.09.053

    49. [49]

      Liu Y N, Jin J Y, Deng H P, Li K, Zheng Y L, Yu C Y, Zhou Y F. Angew Chem Int Ed, 2016, 55(28): 7952 − 7957  doi: 10.1002/anie.201601516

    50. [50]

      Lehn J M. Science, 2002, 295(5564): 2400 − 2403  doi: 10.1126/science.1071063

    51. [51]

      Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH. 1995

    52. [52]

      Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37 − 49  doi: 10.11777/j.issn1000-3304.2017.16262

    53. [53]

      Morisue M, Hoshino Y, Shimizu M, Uemura S, Sakurai S. Chem-Eur J, 2016, 22(37): 13019 − 13022  doi: 10.1002/chem.201602968

    54. [54]

      Wei P F, Yan X Z, Huang F H. Chem Soc Rev, 2015, 44(3): 815 − 832  doi: 10.1039/C4CS00327F

    55. [55]

      Wajahat A, Li X H, Fang L, Gong W T, Ning G L. Supramol Chem, 2018, 30(1): 72 − 79  doi: 10.1080/10610278.2017.1351611

    56. [56]

      Yang L L, Tan X X, Wang Z Q, Zhang X. Chem Rev, 2015, 115(15): 7196 − 7239  doi: 10.1021/cr500633b

    57. [57]

      Chen L H, Bai H T, Xu J F, Wang S, Zhang X. ACS Appl Mater Interfaces, 2017, 9(16): 13950 − 13957  doi: 10.1021/acsami.7b02611

    58. [58]

      Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y. J Am Chem Soc, 2008, 130(15): 5022 − 5023  doi: 10.1021/ja711260m

    59. [59]

      Ji Xiaofan(吉晓帆), Xia Danyu(夏丹玉), Yan Xuzhou(颜徐州), Wang Hu(王虎), Huang Feihe(黄飞鹤). Acta Polymerica Sinica(高分子学报), 2017, (1): 9 − 18  doi: 10.11777/j.issn1000-3304.2017.16167

    60. [60]

      Murray J, Kim K, Ogoshi T, Yao W, Gibb B C. Chem Soc Rev, 2017, 46(9): 2479 − 2496  doi: 10.1039/C7CS00095B

    61. [61]

      Chen Y, Rui L L, Liu L C, Zhang W A. Polym Chem-UK, 2016, 7(19): 3268 − 3276  doi: 10.1039/C6PY00505E

    62. [62]

      Rui L L, Xue Y D, Wang Y, Gao Y, Zhang W A. Chem Commun, 2017, 53(21): 3126 − 3129  doi: 10.1039/C7CC00950J

    63. [63]

      Wu J, Tian J, Rui L L, Zhang W A. Chem Commun, 2018, 54(55): 7629 − 7632  doi: 10.1039/C8CC04275F

    64. [64]

      Schmidt B V K J, Barner-Kowollik C. Angew Chem Int Ed, 2017, 56(29): 8350 − 8369  doi: 10.1002/anie.201612150

    65. [65]

      Xu L, Zhang W Y, Cai H B, Liu F, Wang Y, Gao Y, Zhang W A. J Mater Chem B, 2015, 3(37): 7417 − 7426  doi: 10.1039/C5TB01363A

    66. [66]

      Liu F, Ma Y F, Xu L, Liu L C, Zhang W A. Biomater Sci-UK, 2015, 3(8): 1218 − 1227  doi: 10.1039/C5BM00045A

    67. [67]

      Assaf K I, Nau W M. Chem Soc Rev, 2015, 44(2): 394 − 418  doi: 10.1039/C4CS00273C

    68. [68]

      Liu Y L, Huang Z H, Liu K, Kelgtermans H, Dehaen W, Wang Z Q, Zhang X. Polym Chem-UK, 2014, 5(1): 53 − 56  doi: 10.1039/C3PY01036H

    69. [69]

      Yuan B, Yang H, Wang Z Q, Zhang X. Langmuir, 2014, 30(51): 15462 − 15467  doi: 10.1021/la504068u

    70. [70]

      Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A. Prog Polym Sci, 2005, 30(7): 725 − 782  doi: 10.1016/j.progpolymsci.2005.04.001

    71. [71]

      Derry M J, Fielding L A, Armes S P. Prog Polym Sci, 2016, 52: 1 − 18  doi: 10.1016/j.progpolymsci.2015.10.002

    72. [72]

      Zhu Y Q, Yang B, Chen S, Du J Z. Prog Polym Sci, 2017, 64: 1 − 22  doi: 10.1016/j.progpolymsci.2015.05.001

    73. [73]

      Zhang K K, Jiang M, Chen D Y. Prog Polym Sci, 2012, 37(3): 445 − 486  doi: 10.1016/j.progpolymsci.2011.09.003

    74. [74]

      Smith A E, Xu X W, Mccormick C L. Prog Polym Sci, 2010, 35(1-2): 45 − 93  doi: 10.1016/j.progpolymsci.2009.11.005

    75. [75]

      Wang D R, Wang X G. Prog Polym Sci, 2013, 38(2): 271 − 301  doi: 10.1016/j.progpolymsci.2012.07.003

    76. [76]

      Lynd N A, Meuler A J, Hillmyer M A. Prog Polym Sci, 2008, 33(9): 875 − 893  doi: 10.1016/j.progpolymsci.2008.07.003

    77. [77]

      Zhao L Z, Liu M M, Li S S, Li A, An H Q, Ye H, Zhang Y Z. J Mater Chem C, 2015, 3(15): 3650 − 3658  doi: 10.1039/C5TC00037H

    78. [78]

      Fruhbeisser S, Grohn F. Macromol Chem Phys, 2017, 218(17): 1600526  doi: 10.1002/macp.v218.17

    79. [79]

      Kutz A, Alex W, Krieger A, Grohn F. Macromol Rapid Commun, 2017, 38(17): 1600802  doi: 10.1002/marc.201600802

    80. [80]

      Schappacher M, Deffieux A. Polymer, 2004, 45(14): 4633 − 4639  doi: 10.1016/j.polymer.2004.05.022

    81. [81]

      Ruthard C, Schmidt M, Grohn F. Macromol Rapid Commun, 2011, 32(9-10): 706 − 711  doi: 10.1002/marc.v32.9/10

    82. [82]

      Zhao L Z, Li A, Xiang R, Shen L L, Shi L Q. Langmuir, 2013, 29(28): 8936 − 8943  doi: 10.1021/la401805x

    83. [83]

      Zhang Z H, Xue Y D, Zhang P C, Muller A H E, Zhang W A. Macromolecules, 2016, 49(22): 8440 − 8448  doi: 10.1021/acs.macromol.6b02414

    84. [84]

      Zhang P C, Zhang Z H, Jiang X Z, Rui L L, Gao Y, Zhang W A. Polymer, 2017, 118: 268 − 279  doi: 10.1016/j.polymer.2017.04.063

  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    16. [16]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    17. [17]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

Metrics
  • PDF Downloads(0)
  • Abstract views(222)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return