Citation: Shen-wei Shi, Ting Li, Yang Wang, Wei-fu Dong. Preparation of Antibacterial Hybrid Silica Nanoparticle and Its Application in Polyurethane[J]. Acta Polymerica Sinica, ;2019, 50(7): 721-729. doi: 10.11777/j.issn1000-3304.2019.19009 shu

Preparation of Antibacterial Hybrid Silica Nanoparticle and Its Application in Polyurethane

  • Corresponding author: Wei-fu Dong, wfdong@jiangnan.edu.cn
  • Received Date: 11 January 2019
    Revised Date: 30 January 2019
    Available Online: 19 March 2019

  • A series of reactive QACs with different chain lengths were prepared by inexpensive tertiary amine silane coupling agent, which were covalently grafted onto the surface of SiO2 nanoparticles in one step via a modified Stöber method. This method can increase the graft ratio of QAC relative to the use of dry silica powder. The structure and appearance of hybrid SiO2 nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta potential and thermogravimetric analysis (TGA). The antibacterial activity of hybrid SiO2 nanoparticles was evaluated by shake flask method. The composite films with excellent antimicrobial properties were obtained from a mixture of a polyurethane acrylate prepolymer and hybrid SiO2 nanoparticles via UV curing. The standard antibacterial test method ISO 22196 was used to evaluate the antibacterial properties of the film. The results showed that the hybrid SiO2 nanoparticles have a uniform particle size (~ 40 nm), a smooth spherical shape and a high positive charge on the surface. Antibacterial test results indicated that the hybrid SiO2 nanoparticles have excellent antibacterial activity compared with pure SiO2 nanoparticles, and can completely killed Escherichia coli and Staphylococcus epidermidis in 50 min. As the QAC alkyl chain grows, the antibacterial properties of the nanoparticles are further improved and SiO2-Q-12 can killed two bacteria completely within 20 min. This is mainly due to the hybrid SiO2 nanoparticles are light and have a high positive charge on the surface, so they can be quickly adsorbed on the surface of bacteria to achieve rapid sterilization. The hybrid SiO2 nanoparticles were enriched on the surface of the film. Adding a small amount (5 wt%) of hybrid SiO2 nanoparticles could endow the film with good antibacterial properties and high tensile strength. After the accelerated aging treatment of the composite film according to the national standard GB 15979-2002, it still possessed good antibacterial properties, indicating that the composite film has excellent antibacterial durability and stability. The test of the inhibition zone showed that the composite film was a contact antibacterial material, no antibacterial substance leaching, which was safer and more efficient.
  • 加载中
    1. [1]

    2. [2]

      Kim T, Zhang Q Z, Li J, Zhang L F, Jokerst J V. ACS Nano, 2018, 12(6): 5615 − 5625  doi: 10.1021/acsnano.8b01362

    3. [3]

      Zhang Y, He X L, Ding M M, He W, Li J H, Li J S, Tan H. Biomacromolecules, 2018, 19(2): 279 − 287  doi: 10.1021/acs.biomac.7b01016

    4. [4]

      Lei R Y, Hou J C, Chen Q X, Yuan W R, Cheng B L, Sun Y Q, Jin Y, Ge L J, Ben-Sasson S A, Chen J, Wang H X, Lu W Y, Fang X M. ACS Nano, 2018, 12(6): 5284 − 5296  doi: 10.1021/acsnano.7b09109

    5. [5]

      Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson E E, Brochado A R, Fernandez K C, Dose H, Mori H, Patil K R, Bork P, Typas A. Nature, 2018, 555: 623 − 628  doi: 10.1038/nature25979

    6. [6]

      Brochado A R, Telzerow A, Bobonis J, Banzhaf M, Mateus A, Selkrig J, Huth E, Bassler S, Beas J Z, Zietek M, Ng N, Foerster S, Ezraty B, Py B, Barras F, Savitski M M, Bork P, Göttig S, Typas A. Nature, 2018, 559: 259 − 263  doi: 10.1038/s41586-018-0278-9

    7. [7]

      Sun D D, Zhang W W, Mou Z P, Chen Y, Guo F, Yang E D, Wang W Y. ACS Appl Mater Interfaces, 2017, 9(11): 10047 − 10060  doi: 10.1021/acsami.7b02380

    8. [8]

      Perdikaki A, Galeou A, Pilatos G, Prombona A, Karanikolos G N. Langmuir, 2018, 34(37): 11156 − 11166  doi: 10.1021/acs.langmuir.8b01880

    9. [9]

      Ur Rehman M A, Ferraris S, Goldmann W H, Perero S, Bastan F E, Nawaz Q, Confiengo G G D, Ferraris M, Boccaccini A R. ACS Appl Mater Interfaces, 2017, 9(38): 32489 − 32497  doi: 10.1021/acsami.7b08646

    10. [10]

      Cao F F, Ju E G, Zhang Y, Wang Z Z, Liu C Q, Li W, Huang Y Y, Dong K, Ren J S, Qu X G. ACS Nano, 2017, 11(5): 4651 − 4659  doi: 10.1021/acsnano.7b00343

    11. [11]

      Yang X L, Yang J C, Wang L, Ran B, Jia Y X, Zhang L M, Yang G, Shao H W, Jiang X Y. ACS Nano, 2017, 11(6): 5737 − 5745  doi: 10.1021/acsnano.7b01240

    12. [12]

      Kachoei M, Nourian A, Divband B, Kachoei Z, Shirazi S. Nanomedicine, 2016, 11(19): 2511 − 2527  doi: 10.2217/nnm-2016-0171

    13. [13]

      Aditya A, Chattopadhyay S, Jha D, Gautam H K, Maiti S, Ganguli M. ACS Appl Mater Interfaces, 2018, 10(18): 15401 − 15411  doi: 10.1021/acsami.8b01463

    14. [14]

      Zhao J, Millians W, Tang S, Wu T H, Zhu L, Ming W H. ACS Appl Mater Interfaces, 2015, 7(33): 18467 − 18472  doi: 10.1021/acsami.5b04633

    15. [15]

      Lin J, Chen X Y, Chen C Y, Hu J T, Zhou C L, Cai X F, Wang W, Zheng C, Zhang P P, Cheng J, Guo Z H, Liu H. ACS Appl Mater Interfaces, 2018, 10(7): 6124 − 6136  doi: 10.1021/acsami.7b16235

    16. [16]

      Song Z Y, Wang H J, Wu Y, Gu J J, Li S J, Han H Y. ACS Omega, 2018, 3(10): 14517 − 14525  doi: 10.1021/acsomega.8b01265

    17. [17]

      Gude K, Narayanan R. J Phys Chem C, 2010, 114(14): 6356 − 6362  doi: 10.1021/jp100061a

    18. [18]

      Pageni P, Yang P, Chen Y P, Huang Y, Bam M, Zhu T, Nagarkatti M, Benicewicz B C, Decho A W, Tang C. Biomacromolecules, 2018, 19(2): 417 − 425  doi: 10.1021/acs.biomac.7b01510

    19. [19]

      Ge H W, Zhang J F, Yuan Y, Liu J C, Liu R, Liu X Y. Prog Org Coat, 2017, 106: 20 − 26  doi: 10.1016/j.porgcoat.2017.02.012

    20. [20]

      Chen R, Li T, Zhang Q, Ding Z Y, Ma P M, Zhang S W, Chen M Q, Dong W F, Ming W H. New J Chem, 2017, 41: 9762 − 9768  doi: 10.1039/C7NJ02023F

    21. [21]

      Makarovsky I, Boguslavsky Y, Alesker M, Lellouche J, Banin E, Lellouche J P. Adv Funct Mater, 2011, 21(22): 4295 − 4304  doi: 10.1002/adfm.201101557

    22. [22]

      Volova T G, Shumilova A A, Shidlovskiy I P, Nikolaeva E D, Sukovatiy A G, Vasiliev A D, Shishatskaya E I. Polym Test, 2018, 65: 54 − 68  doi: 10.1016/j.polymertesting.2017.10.023

    23. [23]

      Wang Y Z, Xue X X, Yang H, Luan C. Appl Surf Sci, 2014, 292: 608 − 614  doi: 10.1016/j.apsusc.2013.12.017

    24. [24]

      Yang L, Tang Y, Liu N, Liu C H, Ding Y S, Wu Z Q. Macromolecules, 2016, 49(20): 7692 − 7702  doi: 10.1021/acs.macromol.6b01870

    25. [25]

      Wei B, Gurr P A, Gozen A O, Blencowe A, Solomon D H, Qiao G G, Spontak R J, Genzer J. Nano Lett, 2008, 8(9): 3010 − 3016  doi: 10.1021/nl802109x

    26. [26]

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    3. [3]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    4. [4]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    5. [5]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    8. [8]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    9. [9]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    10. [10]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(0)
  • Abstract views(182)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return