Citation: Rui Sun, Na-sha Qiu, You-qing Shen. Polymeric Cancer Nanomedicines: Challenge and Development[J]. Acta Polymerica Sinica, ;2019, 50(6): 588-601. doi: 10.11777/j.issn1000-3304.2019.19005 shu

Polymeric Cancer Nanomedicines: Challenge and Development

  • Corresponding author: You-qing Shen, shenyq@zju.edu.cn
  • Received Date: 8 January 2019
    Revised Date: 11 February 2019
    Available Online: 3 April 2019

  • At present, cancer nanomedicine mainly focuses on mitigating adverse effects but fails to enhance the therapeutic efficacies of anticancer drugs. With the benchmark of the recent highly effective molecular targeted therapies and immunotherapies, rational design of next-generation cancer nanomedicine should aim at enhancing its therapeutic efficacy. From this point of view, this review first analyszs the typical cancer-drug-delivery process of an intravenously administered nanomedicine and concludes as a cascade of five steps, including circulation in the blood compartments, accumulation in the tumor, subsequent penetration deep into the tumor tissue to reach tumor cells, internalization into those cells, and finally intracellular drug release (CAPIR cascade for short). High efficiency of every step is critical for a nanomedicine to achieve a high overall delivery efficiency and thereby improve the whole therapeutic efficiency. Further analysis shows that to maximize its efficiency, the nanoproperties required in each step for a nanomedicine are different and even opposite in different steps, such as PEG, surface-charge, size, and stability dilemmas. To resolve these dilemmas and integrate all the required nanoproperties into one nanomedicine, stability, surface, and size nanoproperty transitions (3S transitions for short) are proposed. Stimulus-responsive polymers have been designed to realize the 3S transitions, including pH-, ROS-, redox-, enzyme-responsive, and so on. Smart nanomedicines possessing the 3S transitions are demonstrated. The challenges in designing high-performance cancer nanomedicines and their clinical translations are then discussed. Clinical translation is the ultimate goal of nanomedicine research. To design translational nanomedicines, the three key elements, 3S transition capability, material excipientability, and process scale-up ability (CES elements for short) must be considered. Our recent development of noncytotoxic with highly potent therapeutic polymers as a new type of molecular nanomedicine is summarized. Finally, by comparing viral vectors, a possible solution for multifunctional nanomedicines to realize their clinical translation is proposed.
  • 加载中
    1. [1]

      Maeda H. Adv Enzyme Regul, 2001, 41: 189 − 207  doi: 10.1016/S0065-2571(00)00013-3

    2. [2]

      Chen H B, Gu Z J, An H W, Chen C Y, Chen J, Cui R, Chen S Q, Chen W H, Chen X S, Chen X Y, Chen Z, Ding B Q, Dong Q, Fan Q, Fu T, Hou D Y, Jiang Q, Ke H T, Jiang X Q, Liu G, Li S P, Li T Y, Liu Z, Nie G J, Ovais M, Pang D W, Qiu N S, Shen Y Q, Tian H Y, Wang C, Wang H, Wang Z Q, Xu H P, Xu J F, Yang X L, Zhu S, Zheng X C, Zhang X Z, Zhao Y B, Tan W H, Zhang X, Zhao Y L. Sci China Chem, 2018, 61(12): 1503 − 1552  doi: 10.1007/s11426-018-9397-5

    3. [3]

      Stirland D L, Nichols J W, Miura S, Bae Y H. J Control Release, 2013, 172(3): 1045 − 1064  doi: 10.1016/j.jconrel.2013.09.026

    4. [4]

      Hare J I, Lammers T, Ashford M B, Puri S, Storm G, Barry S T. Adv Drug Deliv Rev, 2017, 108: 25 − 38  doi: 10.1016/j.addr.2016.04.025

    5. [5]

      Sun Q H, Zhou Z X, Qiu N S, Shen Y Q. Adv Mater, 2017, 29(14): 1606628  doi: 10.1002/adma.v29.14

    6. [6]

      Sun Q H, Sun X R, Ma X P, Zhou Z X, Jin E L, Zhang B, Shen Y Q, van Kirk E A, Murdoch W J, Lott J R, Lodge T P, Radosz M, Zhao Y L. Adv Mater, 2014, 26(45): 7615 − 7621  doi: 10.1002/adma.v26.45

    7. [7]

      Alexis F, Pridgen E, Molnar L K, Farokhzad O C. Mol Pharma, 2008, 5(4): 505 − 515  doi: 10.1021/mp800051m

    8. [8]

      Wang J Q, Mao W W, Lock L L, Tang J B, Sui M H, Sun W L, Cui H G, Xu D, Shen Y Q. ACS Nano, 2015, 9(7): 7195 − 7206  doi: 10.1021/acsnano.5b02017

    9. [9]

      Tang N, Du G J, Wang N, Liu C C, Hang H Y, Liang W. J Natl Cancer Inst, 2007, 99(13): 1004 − 1015  doi: 10.1093/jnci/djm027

    10. [10]

      Yim H, Park S J, Bae Y H, Na K. Biomaterials, 2013, 34(31): 7674 − 7682  doi: 10.1016/j.biomaterials.2013.06.058

    11. [11]

      Huo M, Yuan J Y, Tao L, Wei Y. Polym Chem, 2014, 5(5): 1519 − 1528  doi: 10.1039/C3PY01192E

    12. [12]

      Wei H, Zhuo R X, Zhang X Z. Prog Polym Sci, 2013, 38(3-4): 503 − 535  doi: 10.1016/j.progpolymsci.2012.07.002

    13. [13]

      Jin E L, Zhang B, Sun X R, Zhou Z X, Ma X P, Sun Q H, Tang J B, Shen Y Q, van Kirk E, Murdoch W J, Radosz M. J Am Chem Soc, 2013, 135(2): 933 − 940  doi: 10.1021/ja311180x

    14. [14]

      Shen Y Q, Zhou Z X, Sui M H, Tang J B, Xu P S, Van Kirk E A, Murdoch W J, Fan M H, Radosz M. Nanomedicine, 2010, 5(8): 1205 − 1217  doi: 10.2217/nnm.10.86

    15. [15]

      Xu P S, Van Kirk E A, Zhan Y H, Murdoch W J, Radosz M, Shen Y Q. Angew Chem, Int Ed, 2007, 46(26): 4999 − 5002  doi: 10.1002/(ISSN)1521-3773

    16. [16]

      Zhou Z X, Shen Y Q, Tang J B, Fan M H, Van Kirk E A, Murdoch W J, Radosz M. Adv Funct Mater, 2009, 19(22): 3580 − 3589  doi: 10.1002/adfm.v19:22

    17. [17]

    18. [18]

      Shen Y Q, Tang H D, Radosz M, van Kirk E, Murdoch W J. pH-Responsive Nanoparticles for Cancer Drug Delivery. In: Jain KK ed. Drug Delivery Systems. Totowa: Humana Press, 2008. 183 – 216

    19. [19]

      Chen W Z, Su L L, Zhang P, Li C, Zhang D, Wu W, Jiang X Q. Polym Chem, 2017, 8(44): 6886 − 6894  doi: 10.1039/C7PY01389B

    20. [20]

      Tian C, Ling J, Shen Y Q. Chinese J Polym Sci, 2015, 33(8): 1186 − 1195  doi: 10.1007/s10118-015-1669-0

    21. [21]

      Huang D, Wang Y Q, Yang F, Shen H, Weng Z Q, Wu D C. Polym Chem, 2017, 8(43): 6675 − 6687  doi: 10.1039/C7PY01556A

    22. [22]

      Shen Y, Ma X, Zhang B, Zhou Z, Sun Q, Jin E, Sui M, Tang J, Wang J, Fan M. Chemistry, 2011, 17(19): 5319 − 5326  doi: 10.1002/chem.v17.19

    23. [23]

      Shen Y Q, Tang H D, Zhan Y H, Van Kirk E A, Murdoch W J. Nanomedicine-NBM, 2009, 5(2): 192 − 201  doi: 10.1016/j.nano.2008.09.003

    24. [24]

    25. [25]

      Zhang X J, Chen D W, Ba S, Zhu J, Zhang J, Hong W, Zhao X L, Hu H Y, Qiao M X. Biomacromolecules, 2014, 15(11): 4032 − 4045  doi: 10.1021/bm5010756

    26. [26]

      Li H J, Du J Z, Liu J, Du X J, Shen S, Zhu Y H, Wang X Y, Ye X D, Nie S M, Wang J. ACS Nano, 2016, 10(7): 6753 − 6761  doi: 10.1021/acsnano.6b02326

    27. [27]

      Yu H J, Guo C Y, Feng B, Liu J P, Chen X Z, Wang D G, Teng L S, Li Y X, Yin Q, Zhang Z W, Li Y P. Theranostics, 2016, 6(1): 14 − 27  doi: 10.7150/thno.13515

    28. [28]

      Wang T T, Wang D G, Yu H J, Wang M W, Liu J P, Feng B, Zhou F Y, Yin Q, Zhang Z W, Huang Y Z, Li Y P. ACS Nano, 2016, 10(3): 3496 − 3508  doi: 10.1021/acsnano.5b07706

    29. [29]

      Zhou Z X, Murdoch W J, Shen Y Q. Polymer, 2015, 76: 150 − 158  doi: 10.1016/j.polymer.2015.08.061

    30. [30]

      Li J J, Ke W D, Wang L, Huang M M, Yin W, Zhang P, Chen Q X, Ge Z S. J Control Release, 2016, 225: 64 − 74  doi: 10.1021/acs.biomac.6b00455

    31. [31]

      Shin J, Shum P, Thompson D H. J Control Release, 2003, 91(1-2): 187 − 200  doi: 10.1016/S0168-3659(03)00232-3

    32. [32]

      Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K. J Am Chem Soc, 2005, 127(6): 1624 − 1625  doi: 10.1021/ja044941d

    33. [33]

      Jeong J H, Kim S W, Park T G. Bioconj Chem, 2003, 14(2): 473 − 479  doi: 10.1021/bc025632k

    34. [34]

      Feng S B, Hu Y, Peng S, Han S L, Tao H, Zhang Q X, Xu X Q, Zhang J X, Hu H Y. Biomaterials, 2016, 105: 167 − 184  doi: 10.1016/j.biomaterials.2016.08.003

    35. [35]

      Sun D K, Ding J X, Xiao C S, Chen J J, Zhuang X L, Chen X S. Adv Healthc Mater, 2015, 4(6): 844 − 855  doi: 10.1002/adhm.201400736

    36. [36]

      Shen Y Q, Zhan Y H, Tang J B, Xu P S, Johnson P A, Radosz M, van Kirk E A, Murdoch W J. Aiche J, 2008, 54(11): 2979 − 2989  doi: 10.1002/aic.v54:11

    37. [37]

      Xu P, Van Kirk E A, Murdoch W J, Zhan Y, Isaak D D, Radosz M, Shen Y. Biomacromolecules, 2006, 7(3): 829 − 835  doi: 10.1021/bm050902y

    38. [38]

    39. [39]

      Wang L, Liu G H, Wang X R, Hu J M, Zhang G Y, Liu S Y. Macromolecules, 2015, 48(19): 7262 − 7272  doi: 10.1021/acs.macromol.5b01709

    40. [40]

      Guan X W, Guo Z P, Lin L, Chen J, Tian H Y, Chen X S. Nano Lett, 2016, 16(11): 6823 − 6831  doi: 10.1021/acs.nanolett.6b02536

    41. [41]

      Wang J Q, Sun X R, Mao W W, Sun W L, Tang J B, Sui M H, Shen Y Q, Gu Z W. Adv Mater, 2013, 25(27): 3670 − 3676  doi: 10.1002/adma.v25.27

    42. [42]

      Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30(12): 2180 − 2198  doi: 10.1016/j.biomaterials.2009.01.026

    43. [43]

      Zhu D C, Yan H J, Liu X, Xiang J J, Zhou Z X, Tang J B, Liu X R, Shen Y Q. Adv Funct Mater, 2017, 27(16): 1606826

    44. [44]

      Yan B K, Zhang Y, Wei C, Xu Y. Polym Chem, 2018, 9(7): 904 − 911  doi: 10.1039/C7PY01908D

    45. [45]

      Sun T B, Jin Y, Qi R, Peng S J, Fan B Z. Polym Chem, 2013, 4(14): 4017 − 4023  doi: 10.1039/c3py00406f

    46. [46]

      Liu J Y, Pang Y, Zhu Z Y, Wang D L, Li C T, Huang W, Zhu X Y, Yan D Y. Biomacromolecules, 2013, 14(5): 1627 − 1636  doi: 10.1021/bm4002574

    47. [47]

      Sun Y X, Ren K F, Chang G X, Zhao Y X, Liu X S, Ji J. Sci Bull, 2015, 60(10): 936 − 942  doi: 10.1007/s11434-015-0780-5

    48. [48]

      Fan H Y, Li Y X, Yang J X, Ye X D. J Phys Chem B, 2017, 121(41): 9708 − 9717  doi: 10.1021/acs.jpcb.7b06165

    49. [49]

      Sun H L, Guo B N, Li X Q, Cheng R, Meng F H, Liu H Y, Zhong Z Y. Biomacromolecules, 2010, 11(4): 848 − 854  doi: 10.1021/bm1001069

    50. [50]

      Sun H L, Guo B N, Cheng R, Meng F H, Liu H Y, Zhong Z Y. Biomaterials, 2009, 30(31): 6358 − 6366  doi: 10.1016/j.biomaterials.2009.07.051

    51. [51]

      Hubbell J A, Cerritelli S, Velluto D. Biomacromolecules, 2007, 8(6): 1966 − 1972  doi: 10.1021/bm070085x

    52. [52]

      Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. J Am Chem Soc, 2008, 130(18): 6001 − 6009  doi: 10.1021/ja800336v

    53. [53]

      Dai J, Lin S D, Cheng D, Zou S Y, Shuai X T. Angew Chem Int Ed, 2011, 50(40): 9404 − 9408  doi: 10.1002/anie.v50.40

    54. [54]

      Li Y, Xiao K, Luo J, Xiao W, Lee J S, Gonik A M, Kato J, Dong T A, Lam K S. Biomaterials, 2011, 32(27): 6633 − 6645  doi: 10.1016/j.biomaterials.2011.05.050

    55. [55]

      Yu S J, Ding J X, He C L, Cao Y, Xu W G, Chen X S. Adv Healthcare Mater, 2014, 3(5): 752 − 760  doi: 10.1002/adhm.201300308

    56. [56]

      Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K. J Am Chem Soc, 2004, 126(8): 2355 − 2361  doi: 10.1021/ja0379666

    57. [57]

      Hu Y W, Du Y Z, Liu N, Liu X, Meng T T, Cheng B L, He J B, You J, Yuan H, Hu F Q. J Control Release, 2015, 206: 91 − 100  doi: 10.1016/j.jconrel.2015.03.018

    58. [58]

      Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. J Control Release, 2011, 152(1): 2 − 12  doi: 10.1016/j.jconrel.2011.01.030

    59. [59]

      Liu H, Wang H, Yang W, Cheng Y. J Am Chem Soc, 2012, 134(42): 17680 − 17687  doi: 10.1021/ja307290j

    60. [60]

      He Y Y, Nie Y, Cheng G, Xie L, Shen Y Q, Gu Z W. Adv Mater, 2014, 26(10): 1534 − 1540  doi: 10.1002/adma.201304592

    61. [61]

    62. [62]

      Ding Y, Kang Y T, Zhang X. Chem Commun, 2015, 51(6): 996 − 1003  doi: 10.1039/C4CC05878J

    63. [63]

      Hu Q Y, Katti P S, Gu Z. Nanoscale, 2014, 6(21): 12273 − 12286  doi: 10.1039/C4NR04249B

    64. [64]

      Qiu N S, Gao J Q, Liu Q, Wang J Q, Shen Y Q. Biomacromolecules, 2018, 19(6): 2308 − 2319  doi: 10.1021/acs.biomac.8b00440

    65. [65]

      Andresen T L, Thompson D H, Kaasgaard T. Mol Membr Biol, 2010, 27(7): 353 − 363  doi: 10.3109/09687688.2010.515950

    66. [66]

      Wang H X, Yang X Z, Sun C Y, Mao C Q, Zhu Y H, Wang J. Biomaterials, 2014, 35(26): 7622 − 7634  doi: 10.1016/j.biomaterials.2014.05.050

    67. [67]

      Zhu L, Wang T, Perche F, Taigind A, Torchilin V P. Proc Natl Acad Sci USA, 2013, 110(42): 17047 − 17052  doi: 10.1073/pnas.1304987110

    68. [68]

      Duan Z Y, Zhang Y H, Zhu H Y, Sun L, Cai H, Li B J, Gong Q Y, Gu Z W, Luo K. ACS Appl Mater Interfaces, 2017, 9(4): 3474 − 3486  doi: 10.1021/acsami.6b15232

    69. [69]

      Lee J S, Groothuis T, Cusan C, Mink D, Feijen J. Biomaterials, 2011, 32(34): 9144 − 9153  doi: 10.1016/j.biomaterials.2011.08.036

    70. [70]

      Qiu N S, Liu X R, Zhong Y, Zhou Z X, Piao Y, Miao L, Zhang Q Z, Tang J B, Huang L, Shen Y Q. Adv Mater, 2016, 28(48): 10613 − 10622  doi: 10.1002/adma.201603095

    71. [71]

      Shao S Q, Zhou Q, Si J X, Tang J B, Liu X R, Wang M, Gao J Q, Wang K, Xu R Z, Shen Y Q. Nature Biomed Eng, 2017, 1(9): 745 − 757  doi: 10.1038/s41551-017-0130-9

    72. [72]

    73. [73]

    74. [74]

      Xu C N, Wang Y B, Yu H Y, Tian H Y, Chen X S. ACS Nano, 2018, 12(8): 8255 − 8265  doi: 10.1021/acsnano.8b03525

    75. [75]

      Kim C S, Lee Y H, Kim J S, Jeong J H, Park T G. Langmuir, 2010, 26(18): 14965 − 14969  doi: 10.1021/la102632m

    76. [76]

      Yang Y F, Yang Y, Xie X Y, Cai X S, Zhang H, Gong W, Wang Z Y, Mei X G. Biomaterials, 2014, 35(14): 4368 − 4381  doi: 10.1016/j.biomaterials.2014.01.076

    77. [77]

      Hansen M B, van Gaal E, Minten I, Storm G, van Hest J C M, Lowik D W P M. J Control Release, 2012, 164(1): 87 − 94  doi: 10.1016/j.jconrel.2012.10.008

    78. [78]

      Li Q W, Cao Z Q, Wang G J. Polym Chem, 2018, 9(4): 463 − 471  doi: 10.1039/C7PY01822C

    79. [79]

      Stern S T, Hall J B, Yu L L, Wood L J, Paciotti G F, Tamarkin L, Long S E, McNeil S E. J Control Release, 2010, 146(2): 164 − 174  doi: 10.1016/j.jconrel.2010.04.008

    80. [80]

      Sun Q H, Radosz M, Shen Y Q. J Control Release, 2012, 164(2): 156 − 169  doi: 10.1016/j.jconrel.2012.05.042

    81. [81]

      Yuan F, Leunig M, Huang S K, Berk D A, Papahadjopoulos D, Jain R K. Cancer Res, 1994, 54(13): 3352 − 3356

    82. [82]

      Manzoor A A, Lindner L H, Landon C D, Park J Y, Simnick A J, Dreher M R, Das S, Hanna G, Park W, Chilkoti A, Koning G A, ten Hagen T L M, Needham D, Dewhirst M W. Cancer Res, 2012, 72(21): 5566 − 5575  doi: 10.1158/0008-5472.CAN-12-1683

    83. [83]

      Sun X R, Wang G W, Zhang H, Hu S Q, Liu X, Tang J B, Shen Y Q. ACS Nano, 2018, 12(6): 6179 − 6192  doi: 10.1021/acsnano.8b02830

    84. [84]

    85. [85]

      Zheng C X, Zhao Y, Liu Y. Chinese J Polym Sci, 2018, 36(3): 322 − 346  doi: 10.1007/s10118-018-2078-y

    86. [86]

      Waterhouse D N, Tardi P G, Mayer L D, Bally M B. Drug Safety, 2001, 24: 903 − 920  doi: 10.2165/00002018-200124120-00004

    87. [87]

      Gupte A, Mumper R J. Cancer Treat Rev, 2009, 35(1): 32 − 46  doi: 10.1016/j.ctrv.2008.07.004

    88. [88]

      Kaiafa G D, Saouli Z, Diamantidis M D, Kontoninas Z, Voulgaridou V, Raptaki M, Arampatzi S, Chatzidimitriou M, Perifanis V. Eur J Intern Med, 2012, 23(8): 738 − 741  doi: 10.1016/j.ejim.2012.07.009

    89. [89]

      Brady D C, Crowe M S, Turski M L, Hobbs G A, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell S L, Thiele D J, Counter C M. Nature, 2014, 509(7501): 492 − 496  doi: 10.1038/nature13180

    90. [90]

      Parr-Sturgess C A, Tinker C L, Hart C A, Brown M D, Clarke N W, Parkin E T. Mol Cancer Res, 2012, 10(10): 1282 − 1293  doi: 10.1158/1541-7786.MCR-12-0312

    91. [91]

      Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F, Olopade O I, Glesne D. Proc Natl Acad Sci USA, 2007, 104(7): 2247 − 2252  doi: 10.1073/pnas.0607238104

    92. [92]

      Feng W K, Ye F, Xue W L, Zhou Z X, Kang Y J. Mol Pharm, 2009, 75(1): 174 − 182  doi: 10.1124/mol.108.051516

    93. [93]

      Landriscina M, Bagalá C, Mandinova A, Soldi R, Micucci I, Bellum S, Prudovsky I, Maciag T. J Biol Chem, 2001, 276(27): 25549 − 25557  doi: 10.1074/jbc.M102925200

    94. [94]

      McCarron A, Donnelley M, McIntyre C, Parsons D. J Biotechnol, 2016, 240: 23 − 30  doi: 10.1016/j.jbiotec.2016.10.016

    95. [95]

      Griesenbach U, Davies J C, Alton E. Curr Opin Pilm Med, 2016, 22(6): 602 − 609  doi: 10.1097/MCP.0000000000000327

    96. [96]

      Makis A, Hatzimichael E, Papassotiriou I, Voskaridou E. AM J Hematol, 2016, 91(11): 1135 − 1145  doi: 10.1002/ajh.v91.11

    97. [97]

      Saraiva J, Nobre R J, de Almeida L P. J Control Release, 2016, 241: 94 − 109  doi: 10.1016/j.jconrel.2016.09.011

  • 加载中
    1. [1]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    2. [2]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    3. [3]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    6. [6]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    7. [7]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    8. [8]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    9. [9]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    10. [10]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    11. [11]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    12. [12]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    13. [13]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    14. [14]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    17. [17]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    20. [20]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

Metrics
  • PDF Downloads(0)
  • Abstract views(97)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return