Citation: Jian-xu Zhang, Ting-ting Sun, Zhi-gang Xie. Dye-protein Hybrid Nanoparticles for Photothermal Therapy of Tumor Cells[J]. Acta Polymerica Sinica, ;2019, 50(6): 633-641. doi: 10.11777/j.issn1000-3304.2019.19001 shu

Dye-protein Hybrid Nanoparticles for Photothermal Therapy of Tumor Cells

  • Corresponding author: Ting-ting Sun, suntt@ciac.ac.cn Zhi-gang Xie, xiez@ciac.ac.cn
  • Received Date: 3 January 2019
    Revised Date: 12 February 2019
    Available Online: 28 March 2019

  • To make up for the inherent drawbacks (e.g. hydrophobicity, toxicity, and instability) of near-infrared Cypate dyes, as photothermal agents, stable hybrid nanoparticles (CBNPs) with small size were prepared from bovine serum albumin (BSA) and Cypate dyes under hydrothermal conditions. Free Cypate exhibited strong fluorescence whereas fluorescence quenching in CBNPs caused a sharp decrease in emission peak intensity, so the dye molecules were successfully assembled into protein nanoparticles. As-prepared CBNPs were characterized with dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of CBNPs was around 25 – 40 nm with a low polydispersity index of 0.2, slightly higher than the measured values from TEM observation. BSA encapsulation could significantly improve the water solubility of Cypate dye and the stability of dye aqueous solutions. Besides, these nanoparticles showed good colloidal stability and biocompatibility. Photothermal experiments suggested that the protein nanoparticles had good photothermal performance and were able to generate enough heat under near-infrared laser irradiation. The photothermal conversion efficiency (η) of CBNPs under 808 nm laser irradiation reached up to 50%, which made them outperform the small molecules of neat Cypate dyes in terms of their photothermal conversion capabilities. Confocal laser scanning microscopy further revealed that the protein nanoparticles could be efficiently internalized by cancer cells in a time-dependent manner, which is very important for their therapeutic functions. Photothermal treatment toward human cervical carcinoma (HeLa) cells and human liver hepatocellular carcinoma (HepG2) cells under laser irradiation was extamined by MTT method, in which the protein nanoparticles showed an effective inhibition effect on tumor cell proliferation at the cellular level. Live/dead cell staining experiments conducted on HeLa cells also showed the same results intuitively. The dye-protein hybrid nanoparticles developed in this study as a novel nano-agent possess promising prospects in the field of tumor photothermal therapy.
  • 加载中
    1. [1]

      Koo Y E, Reddy G R, Bhojani M, Schneider R, Philbert M A, Rehemtulla A, Ross B D, Kopelman R. Adv Drug Delivery Rev, 2006, 58: 1556 − 1577  doi: 10.1016/j.addr.2006.09.012

    2. [2]

      Abadeer N S, Murphy C J. J Phys Chem C, 2016, 120: 1171 − 1176

    3. [3]

    4. [4]

      Li S, Chen Y, Liu H, Wang Y, Liu L, Lv F, Li Y, Wang S. Chem Mater, 2017, 29: 6087 − 6094  doi: 10.1021/acs.chemmater.7b01965

    5. [5]

      Li Y, Liu Z, Hou Y, Yang G, Fei X, Zhao H, Guo Y, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z. ACS Appl Mater Interfaces, 2017, 9: 25098 − 25106  doi: 10.1021/acsami.7b05824

    6. [6]

      Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X. Adv Mater, 2016, 28: 3669 − 3676  doi: 10.1002/adma.201600284

    7. [7]

      Han H S, Choi K Y, Lee H, Lee M, An J Y, Shin S, Kwon S, Lee D S, Park J H. ACS Nano, 2016, 10: 10858 − 10868  doi: 10.1021/acsnano.6b05113

    8. [8]

    9. [9]

      Yang J, Yao M H, Jin R M, Zhao D H, Zhao Y D, Liu B. ACS Biomater Sci Eng, 2017, 3: 2391 − 2398  doi: 10.1021/acsbiomaterials.7b00359

    10. [10]

      Luo S, Zhang E, Su Y, Cheng T, Shi C. Biomaterials, 2011, 32: 7127 − 7138  doi: 10.1016/j.biomaterials.2011.06.024

    11. [11]

      Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. J Pharm Sci, 2013, 102: 6 − 28  doi: 10.1002/jps.23356

    12. [12]

      Peng C L, Shih Y H, Lee P C, Hsieh T M H, Luo T Y, Shieh M J. ACS Nano, 2011, 5: 5594 − 5607  doi: 10.1021/nn201100m

    13. [13]

      Tan X, Luo S, Wang D, Su Y, Cheng T, Shi C. Biomaterials, 2012, 33: 2230 − 2239  doi: 10.1016/j.biomaterials.2011.11.081

    14. [14]

      Yue C, Liu P, Zheng M, Zhao P, Wang Y, Ma Y, Cai L. Biomaterials, 2013, 34: 6853 − 6861  doi: 10.1016/j.biomaterials.2013.05.071

    15. [15]

      Lin W, Li Y, Zhang W, Liu S, Xie Z, Jing X. ACS Appl Mater Interfaces, 2016, 8: 24426 − 24432  doi: 10.1021/acsami.6b07103

    16. [16]

      Céspedes M V, Unzueta U, Tatkiewicz W, Sánchez-Chardi A, Conchillo-Solé O, Álamo P, Xu Z, Casanova I, Corchero J L, Pesarrodona M, Cedano J, Daura X, Ratera I, Veciana J, Ferrer-Miralles N, Vazquez E, Villaverde A, Mangues R. ACS Nano, 2014, 8: 4166 − 4176  doi: 10.1021/nn4055732

    17. [17]

      Kratz F. J Controll Release, 2008, 132: 171 − 183  doi: 10.1016/j.jconrel.2008.05.010

    18. [18]

      Chen Q, Liu Z. Adv Mater, 2016, 28: 10557 − 10566  doi: 10.1002/adma.v28.47

    19. [19]

      Gause K T, Yan Y, Cui J, O’Brien-Simpson N M, Lenzo J C, Reynolds E C, Caruso F. ACS Nano, 2015, 9: 2433 − 2444  doi: 10.1021/acsnano.5b00393

    20. [20]

      Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z. ACS Nano, 2015, 9: 5223 − 5233  doi: 10.1021/acsnano.5b00640

    21. [21]

      Wang Y, Yang T, Ke H, Zhu A, Wang Y, Wang J, Shen J, Liu G, Chen C, Zhao Y, Chen H. Adv Mater, 2015, 27: 3874 − 3882  doi: 10.1002/adma.201500229

    22. [22]

      Jiang C, Cheng H, Yuan A, Tang X, Wu J, Hu Y. Acta Biomater, 2015, 14: 61 − 69  doi: 10.1016/j.actbio.2014.11.041

    23. [23]

      Yang T, Wang Y, Ke H, Wang Q, Lv X, Wu H, Tang Y, Yang X, Chen C, Zhao Y, Chen H. Adv Mater, 2016, 28: 5923 − 5930  doi: 10.1002/adma.201506119

    24. [24]

      Wang X, Zhang J, Wang Y, Liu Y, Li Z, Xie Z, Chen Z. Adv Funct Mater, 2017, 27: 1702051  doi: 10.1002/adfm.v27.43

    25. [25]

      Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Adv Mater, 2013, 25: 1353 − 1359  doi: 10.1002/adma.v25.9

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    6. [6]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    7. [7]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    11. [11]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    12. [12]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    15. [15]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    18. [18]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(0)
  • Abstract views(118)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return