Citation: Bao-yi Wu, Ya-wen Xu, Xiao-xia Le, Yu-kun Jian, Wei Lu, Jia-wei Zhang, Tao Chen. Smart Hydrogel Actuators Assembled via Dynamic Boronic Ester Bonds[J]. Acta Polymerica Sinica, ;2019, 50(5): 496-504. doi: 10.11777/j.issn1000-3304.2019.18281 shu

Smart Hydrogel Actuators Assembled via Dynamic Boronic Ester Bonds

  • The reversible mechanical deformations of smart hydrogel actuators, such as swelling/shrinking and bending, under various external stimuli have earned them mounting attention in the application arenas of biomimetic actuators, soft robots, etc. Hydrogel actuators were initailly designed with isotropic structures for a simple swelling/shrinking triggered by external stimuli, while the research progress afterwards focuses more on the design of anisotropic structures that aims at complex shape deformation. However, the determined structure of traditional anisotropic hydrogel actuators typically led to fixed shape deformation direction and degree, which limited them from meeting the actual needs. To this end, we got inspired by the assembly of building blocks and integrated boronic acid groups into the hydrogel bulks. Poly(vinyl alcohol) (PVA) promoted the binding process of newly introduced groups by forming PBA-diol ester bonds with them under alkaline conditions, which was further confirmed by microscopic infrared spectroscopy. The dynamic covalent bonds between two hydrogel sheets were so strong that they were adhered firmly with each other without breaking during the tensile test. Then, two kinds of cationic monomers, methacryloxyethyltrimethyl ammonium chloride (METAC) and N-isopropyl acrylamide (NIPAM), were introduced into the hydrogel system, respectively, to afford two types of stimuli-responsive hydrogels, and the smart hydrogel actuators that dually responded to temeperature and ionic strength were successfully fabricated by the sheet combination via PBA-diol ester bonds. Both 2D and 3D architectures could be achieved at elaborate selection of bonding positions. For instance, bonding of a 2D octopus-shaped hydrogel to another planar hydrogel could transfrom the 2D structure into a 3D type along with the swelling of octopus-shaped hydrogel. Finally, integration of METAC and NIPAM into one system could afford a soft gripper with tunable grasping force and dual responsiveness to ion strength and temperature. Our research has provided a new perspective for the design and fabrication of novel hydrogel actuators with complex deformations.
  • 加载中
    1. [1]

      Yao C, Liu Z, Yang C, Wang W, Ju X J, Xie R, Chu L Y. Adv Funct Mater, 2015, 25: 2980 − 2991  doi: 10.1002/adfm.201500420

    2. [2]

      Yao C, Liu Z, Yang C, Wang W, Ju X J, Xie R, Chu L Y. ACS Appl Mater Interfaces, 2016, 8: 21721 − 21730  doi: 10.1021/acsami.6b07713

    3. [3]

    4. [4]

      Xiao S W, Zhang M Z, He X M, Huang L, Zhang Y X, Ren B P, Zhong M Q, Chang Y, Yang J T, Zheng J. ACS Appl Mater Interfaces, 2018, 10: 21642 − 21653  doi: 10.1021/acsami.8b06169

    5. [5]

      Xiao S W, Yang Y, Zhong M Q, Chen H, Zhang Y X, Yang J T. ACS Appl Mater Interfaces, 2017, 9: 20843 − 20851  doi: 10.1021/acsami.7b04417

    6. [6]

      Gong X L, Xiao Y Y, Pan M, Kang Y, Li B J, Zhang S. ACS Appl Mater Interfaces, 2016, 8: 27432 − 27437  doi: 10.1021/acsami.6b09605

    7. [7]

      Ma C X, Le X X, Tang X L, He J, Xiao P, Zheng J, Xiao H, Lu W, Zhang J W, Huang Y J, Chen T. Adv Funct Mater, 2016, 26: 8670 − 8676  doi: 10.1002/adfm.v26.47

    8. [8]

    9. [9]

      Yan X Z, Wang F, Zheng B, Huang F H. Chem Soc Rev, 2012, 41: 6042 − 6065  doi: 10.1039/c2cs35091b

    10. [10]

      Ionov L. Mater Today, 2014, 17: 494 − 503  doi: 10.1016/j.mattod.2014.07.002

    11. [11]

      Zheng J, Xiao P, Le X X, Lu W, Théato P, Ma C X, Du B Y, Zhang J W, Huang Y J, Chen T. J Mater Chem C, 2018, 6: 1320 − 1327  doi: 10.1039/C7TC04879C

    12. [12]

      Ma C X, Lu W, Yang X X, He J, Le X X, Wang L, Zhang J W, Serpe M J, Huang Y J, Chen T. Adv Funct Mater, 2018, 28: 1704568 − 1704575  doi: 10.1002/adfm.v28.7

    13. [13]

      Wang L, JianY K, Le X X, Lu W, Ma C X, Zhang J W, Huang Y J, Huang C F, Chen T. Chem Commun, 2018, 54: 1229 − 1232  doi: 10.1039/C7CC09456F

    14. [14]

      Yuk H, Lin S, Ma C, Takaffoli M, Fang N X, Zhao X. Nat Commun, 2017, 8: 14230 − 14242  doi: 10.1038/ncomms14230

    15. [15]

      Lee Y, Cha S H, Kim Y W, Choi D, Sun J Y. Nat Commun, 2018, 9: 1804 − 1812  doi: 10.1038/s41467-018-03954-x

    16. [16]

      Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman J W, Lee H. ACS Appl Mater Interfaces, 2018, 10: 17512 − 17518  doi: 10.1021/acsami.8b04250

    17. [17]

      Oh M S, Song Y S, Kim C, Kim J, You J B, Kim T S, Lee C S, Im S G. ACS Appl Mater Interfaces, 2016, 8: 8782 − 8788  doi: 10.1021/acsami.5b12704

    18. [18]

      Liu Y, Zhang K H, Ma J H, Vancso G J. ACS Appl Mater Interfaces, 2017, 9: 901 − 908  doi: 10.1021/acsami.6b13097

    19. [19]

      Ionov L. Adv Funct Mater, 2013, 23: 4555 − 4570  doi: 10.1002/adfm.v23.36

    20. [20]

      Kim S J, Kim M S, Kim S I, Spinks G M, Kim B C, Wallace G G. Chem Mater, 2006, 18: 5805 − 5809  doi: 10.1021/cm060988h

    21. [21]

      Lou R C, Wu J, Dinh N D, Chen C H. Adv Funct Mater, 2015, 25: 7272 − 7279  doi: 10.1002/adfm.v25.47

    22. [22]

      Asoh T, Matsusaki M, Kaneko T, Akashi M. Adv Mater, 2008, 20: 2080 − 2083  doi: 10.1002/(ISSN)1521-4095

    23. [23]

      Kim Y S, Liu M J, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Takata M, Aida T. Nat Commun, 2015, 14: 1002 − 1007

    24. [24]

      Liu M J, Ishida Y, Ebina Y, Sasaki T, Takara M, Aida T. Nat Mater, 2015, 517: 68 − 72

    25. [25]

      Cheng M J, Zhu G Q, Li L, Zhang S, Zhang D Q, Kuehne A J C, Shi F. Angew Chem Int Ed, 2018, 57: 14106 − 14110  doi: 10.1002/anie.201808294

    26. [26]

      Ju G N, Guo F L, Zhang Q, Kuehne A J C, Cui S X, Cheng M J, Shi F. Adv Mater, 2017, 29: 1702444 − 1702450  doi: 10.1002/adma.v29.37

    27. [27]

      Ju G N, Cheng M J, Guo F L, Zhang Q, Shi F. Angew Chem Int Ed, 2018, 130: 9101 − 9105  doi: 10.1002/ange.201803632

    28. [28]

      Zhao Q, Yang X X, Ma C X, Chen D, Bai H, Li T F, Yang W, Xie T. Mater Horiz, 2016, 3: 422 − 428  doi: 10.1039/C6MH00167J

    29. [29]

      Tamesue S, Yasuda K, Endo T. ACS Appl Mater Interfaces, 2018, 10: 29925 − 29932  doi: 10.1021/acsami.8b09136

    30. [30]

      Gladman A S, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J A. Nat Mater, 2016, 15: 413 − 418  doi: 10.1038/nmat4544

    31. [31]

      Ge Q, Qi H J, Dunn M L. Appl Phys Lett, 2013, 103: 131901 − 13906  doi: 10.1063/1.4819837

    32. [32]

      Wang X J, Guo X G, Ye J L, Zheng N, Kogli P, Choi D, Zhang Y, Xie Z Q, Zhang Q H, Luan H W, Nan K, Kim B H, Xu Y M, Shan X W, Bai W.B, Sun R J, Wang Z Z, Jang H, Zhang F, Ma Y J, Xu Z, Feng X, Xie T, Huang Y H, Zhang Y H, Rogers J A. Adv Mater, 2018, 31(2): 1805615 – 1805624

    33. [33]

      Ma C X, Li T F, Zhao Q, Yang X X, Wu J J, Luo Y W, Xie T. Adv Mater, 2014, 26: 5665 − 5669  doi: 10.1002/adma.201402026

    34. [34]

      Cromwell O R, Chung J, Guan Z B. J Am Chem Soc, 2015, 137: 6492 − 6495  doi: 10.1021/jacs.5b03551

    35. [35]

      Hong S H, Kim S, Park J P, Shin M, Kim K, Ryu J H, Lee H. Biomacromolecules, 2018, 19: 2053 − 2061  doi: 10.1021/acs.biomac.8b00144

    36. [36]

      Brewer S H, Allen A M, Lappi S E, Chasse T L, Briggman K A, Gorman C B, Franzen S. Langmuir, 2004, 20: 5512 − 5520  doi: 10.1021/la035037m

    37. [37]

      Chen Y, Tang Z, Zhang X, Liu Y, Wu S, Guo B. ACS Appl Mater Interfaces, 2018, 10: 24224 − 24231  doi: 10.1021/acsami.8b09863

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    3. [3]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    10. [10]

      Qizhi Yao Gu Jin Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071

    11. [11]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    18. [18]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

Metrics
  • PDF Downloads(0)
  • Abstract views(656)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return