Citation: Qiang Yin, Jing-jing Liu, Meng-ting Tian, Hao Xie, Lei Shen, Tao-lei Sun. Protein Fibrillation in Neurodegenerative Diseases and Its Chiral Interaction with Interfaces[J]. Acta Polymerica Sinica, ;2019, 50(6): 575-587. doi: 10.11777/j.issn1000-3304.2019.18276 shu

Protein Fibrillation in Neurodegenerative Diseases and Its Chiral Interaction with Interfaces

  • A hallmark event of neurodegenerative diseases (NDs) is the misfolding, aggregation and fibrillation of related proteins, namely amyloidosis. For example, amyloid-β (Aβ) and Tau, α-synuclein (α-syn), superoxide dismutase 1 (SOD1) and huntingtin exon 1 (HTTexon1) are tightly linked to Alzheimer’s Disease (AD), Parkinson Disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Huntington ’s Disease (HD), respectively. Plasma membrane plays a crucial role in the pathological processes of NDs, including the production, intracellular diffusion, intercellular transmission, endocytosis and clearance of NDs proteins and the resulting aggregates. Therefore, the interactions between NDs proteins and membrane interfaces significantly influence the protein fibrillation and NDs pathogenesis. Properties of membrane interfaces including amphiphilicity and charge density can influence the adsorption of proteins onto membranes and thus the protein folding and aggregation. As the basic chemical property of plasma membranes, chirality can determine key biophysical interactions. The alternation of molecule chirality can cause entirely different biophysical interactions and thus the biofunctions. From this biomimetic perspective, extensive works have demonstrated that the chirality of interfaces can significantly affect protein-surface interactions and thus the fibrillation processes. This brings us to reconsider the stereoselective interactions between NDs proteins and the chiral moieties on membrane interfaces and their impact during NDs pathogenesis. This review article is aimed to reveal the key role of membrane interfaces in protein fibrillation and discuss the impact of interfaces during NDs pathogenesis. The stereoselective protein-membrane interactions and their effects on protein fibrillation are elucidated from a molecular level. The designs of NDs drugs based on chiral interactions are also discussed. These specific aims will deepen our mechanistic insights into how interfaces affect NDs pathogenesis and facilitate the discovery of effective drugs for preventing protein fibrillation and eventually the cure of NDs.
  • 加载中
    1. [1]

      Riek R, Eisenberg D S. Nature, 2016, 539: 227 − 235  doi: 10.1038/nature20416

    2. [2]

      Pannee J, Portelius E, Oppermann M, Atkins A, Hornshaw M, Zegers I, Hojrup P, Minthon L, Hansson O, Zetterberg H. Alzeimer’s Dis, 2013, 33: 1021 − 1032  doi: 10.3233/JAD-2012-121471

    3. [3]

      Li C Z, Gotz J. Nat Rev Drug Discov, 2017, 16: 863 − 883  doi: 10.1038/nrd.2017.155

    4. [4]

      Goedert M. Nat Rev Neurosci, 2001, 2: 492 − 501  doi: 10.1038/35081564

    5. [5]

      Ruegsegger C, Maharjan N, Goswami A, Filezac L, Weis J, Troost D, Heller M, Gut H, Saxena S. Acta Neuropathol, 2016, 131: 427 − 451  doi: 10.1007/s00401-015-1510-4

    6. [6]

      Ruiz-Arlandis G, Pieri L, Bousset L, Melki R. Neuropathol Appl Neurobiol, 2016, 42: 137 − 152  doi: 10.1111/nan.2016.42.issue-2

    7. [7]

      Chiti F, Dobson C M. Annu Rev Biochem, 2006, 75: 333 − 366  doi: 10.1146/annurev.biochem.75.101304.123901

    8. [8]

      Goedert M. Science, 2015, 349: 1255555  doi: 10.1126/science.1255555

    9. [9]

      Lorenzo A, Yankner B A. Proc Nat Acad Sci USA, 1994, 91: 12243 − 12247  doi: 10.1073/pnas.91.25.12243

    10. [10]

      Kayed R, Head E, Thompson J L, McIntire T M, Milton S C, Cotman C W, Glabe C G. Science, 2003, 300: 486 − 489  doi: 10.1126/science.1079469

    11. [11]

      Makin S. Nature, 2018, 559: S4 − S7  doi: 10.1038/d41586-018-05719-4

    12. [12]

      Butterfield S M, Lashuel H. A, Angew Chem Int Ed, 2010, 49: 5628 − 5654  doi: 10.1002/anie.v49:33

    13. [13]

      Shrivastava A N, Aperia A, Melki R, Triller A. Neuron, 2017, 95: 33 − 50  doi: 10.1016/j.neuron.2017.05.026

    14. [14]

      Baig A M. ACS Chem Neurosci, 2019, 10: 21 − 24  doi: 10.1021/acschemneuro.8b00409

    15. [15]

      Stopschinski B E, Diamond M I. Lancet Neurol, 2017, 16: 323 − 332  doi: 10.1016/S1474-4422(17)30037-6

    16. [16]

      Collinge J. Nature, 2016, 539: 217 − 226  doi: 10.1038/nature20415

    17. [17]

      LaFerla F M, Green K N, Oddo S. Nat Rev Neurosci, 2007, 8: 499 − 509  doi: 10.1038/nrn2168

    18. [18]

      Strooper B D, Karran E. Cell, 2016, 164: 603 − 615  doi: 10.1016/j.cell.2015.12.056

    19. [19]

      Matsuzaki K. Biochim Biophys Acta, 2007, 1768: 1935 − 1942  doi: 10.1016/j.bbamem.2007.02.009

    20. [20]

      Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Schiossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D. Nature, 1992, 359: 325 − 327  doi: 10.1038/359325a0

    21. [21]

      Shen L, Adachi T, Vanden Bout D, Zhu X Y. J Am Chem Soc, 2012, 134: 14172 − 14178  doi: 10.1021/ja305398f

    22. [22]

      Burke K A, Yates E A, Legleiter J. Front Neurol, 2013, 4: 1 − 17

    23. [23]

      Mason S F. Nature, 1984, 311: 19 − 23  doi: 10.1038/311019a0

    24. [24]

      Blackmond D G. Cold Spring Harb Perspect Biol, 2010, 2: a002147

    25. [25]

      Bada J L. Method Enzymology, 1984, 106: 98 − 115  doi: 10.1016/0076-6879(84)06011-0

    26. [26]

      Cintas P. Angew Chem Int Ed, 2002, 41: 1139 − 1145  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Koo E H, Squazzo S L. J Biol Chem, 1994, 269: 17386 − 17389

    28. [28]

      Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Proc Natl Acad Sci USA, 2001, 98: 5815 − 5820  doi: 10.1073/pnas.081612998

    29. [29]

      Marquer C, Devauges V, Cossec J C, Liot G, Lecart S, Saudou F, Duyckaerts C, Leveque-Fort S, Potier M C. FASEB J, 2011, 25: 1295 − 1305  doi: 10.1096/fj.10-168633

    30. [30]

      Buffone M G, Verstraeten S V, Calamera J C, Doncel G F. J Androl, 2009, 30: 552 − 558  doi: 10.2164/jandrol.108.006551

    31. [31]

      Bodovitz S, Klein W L. J Biol Chem, 1996, 271: 4436 − 4440  doi: 10.1074/jbc.271.8.4436

    32. [32]

      Thompson A G, Gray E, Heman-Ackah S M, Mager I, Talbot K, Andaloussi, S E, Wood M J, Turner M R. Nat Rev Neurol, 2016, 8: 1 − 12

    33. [33]

      Arbor S C, LaFontaine M, Cumbay M. Yale J Biol Med, 2016, 89: 5 − 21

    34. [34]

      Bharadwaj P, Solomon T, Malajczuk C J, Mancera R L, Howard M, Arrigan D W M, Newsholme P, Martins R N. Biochim Biophys Acta Biomembr, 2018, 1860: 1639 − 1651  doi: 10.1016/j.bbamem.2018.03.015

    35. [35]

      Kayed R, Sokolov Y, Edmonds B, Mclntire T M, Milton S C, Hall J E, Glabe C G. J Biol Chem, 2004, 279: 46363 − 46366  doi: 10.1074/jbc.C400260200

    36. [36]

      Aisenbrey C, Borowik T, Bystrom R, Bokvist M, Lindstrom F, Misiak H, Sani M A, Grobner G. Eur Biophys J, 2008, 37: 247 − 255  doi: 10.1007/s00249-007-0237-0

    37. [37]

      Ehehalt R, Keller P, Haass C, Thiele C, Simons K. J Cell Biol, 2003, 160: 113 − 123  doi: 10.1083/jcb.200207113

    38. [38]

      Riddell D R, Christie G, Hussain I, Dingwall C. Curr Biol, 2001, 11: 1288 − 1293  doi: 10.1016/S0960-9822(01)00394-3

    39. [39]

      Rausch J M, Marks J R, Rathinakumar R, Wimley W C. Biochemistry, 2007, 46: 12124 − 12130  doi: 10.1021/bi700978h

    40. [40]

      Gonzalez M R, Bischofberger M, Pernot L, van der Goot F G, Freche B. Cell Mol Life Sci, 2008, 65: 493 − 507  doi: 10.1007/s00018-007-7434-y

    41. [41]

      Bechinger B, Lohner K. Biochim Biophys Acta Biomembr, 2006, 1758: 1529 − 1539  doi: 10.1016/j.bbamem.2006.07.001

    42. [42]

      Danzer K M, Haasen D, Karow A R, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M. J Neurosci, 2007, 27: 9220 − 9232  doi: 10.1523/JNEUROSCI.2617-07.2007

    43. [43]

      Lashuel H A. Sci Aging Konwl Environ, 2005, 38: 28 − 39

    44. [44]

      Pearce M M P, Spartz E J, Hong W, Luo L, Kopito R R. Nat Commun, 2015, 6: 6768  doi: 10.1038/ncomms7768

    45. [45]

      Wong Y C, Krainc D. Nat Med, 2017, 23: 1 − 13

    46. [46]

      Rajendran L, Honsho M, Zahn T R, Keller P, Geiger K D, Verkade P, Simons K. Proc Natl Acad Sci USA, 2006, 103: 11172 − 11177  doi: 10.1073/pnas.0603838103

    47. [47]

      Lee H J, Suk J E, Bae E J, Lee S J. Biochem Biophys Res Commun, 2008, 372: 423 − 428  doi: 10.1016/j.bbrc.2008.05.045

    48. [48]

      Yuyama K, Sun H, Mitsutake S, Igarashi Y. J Biol Chem, 2012, 287: 10977 − 10989  doi: 10.1074/jbc.M111.324616

    49. [49]

      Alvarez-Erviti L, Seow Y, Schapira A H, Gardiner C, Sargent I L, Wood M J A, Cooper J M. Neurobiol Dis, 2011, 42: 360 − 367  doi: 10.1016/j.nbd.2011.01.029

    50. [50]

      Saman S, Kim W H, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee A C, Alvarez V E, Lee N C Y, Hall G F. J Biol Chem, 2012, 287: 3842 − 3849  doi: 10.1074/jbc.M111.277061

    51. [51]

      Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Kugler S, Ikezu T. Nat Neurosci, 2015, 18: 1584 − 1593  doi: 10.1038/nn.4132

    52. [52]

      Munch C, O’Brien J, Bertolotti A. Proc Natl Acad Sci USA, 2011, 108: 3548 − 3553  doi: 10.1073/pnas.1017275108

    53. [53]

      Kfoury N, Holmes B B, Jiang H, Holtzman D M, Diamond M I. J Biol Chem, 2012, 287: 19440 − 19451  doi: 10.1074/jbc.M112.346072

    54. [54]

      Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman B T. J Neurochem, 2016, 139: 1163 − 1174  doi: 10.1111/jnc.2016.139.issue-6

    55. [55]

      Perrais D, Merrifield C J. Develop Cell, 2005, 9: 581 − 592  doi: 10.1016/j.devcel.2005.10.002

    56. [56]

      Fiandaca M S, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz J B, Abner E L, Petersen R C, Federoff H J, Miller B L, Goetzl E J. Alzheimers Dement, 2015, 11: 600 − 607  doi: 10.1016/j.jalz.2014.06.008

    57. [57]

      Lobb R J, Becker M, Wen S W, Wong C S F, Wiegmans A P, Leimgruber A, Moller A. J Extracell Vesicles, 2015, 4: 27031  doi: 10.3402/jev.v4.27031

    58. [58]

      Marcus M E, Leonard J N. Pharmaceuticals (Basel), 2013, 6: 659 − 680  doi: 10.3390/ph6050659

    59. [59]

      Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood M J. Nat Biotechnol, 2011, 29: 341 − 345  doi: 10.1038/nbt.1807

    60. [60]

      Wang H Y, Lee D H, D’Andrea M R, Peterson P A, Shank R P, Reitz A B. J Biol Chem, 2000, 275: 5626 − 5632  doi: 10.1074/jbc.275.8.5626

    61. [61]

      Nagele R G, D’Andrea M R, Anderson W J, Wang H Y. Neuroscience, 2002, 110: 199 − 211  doi: 10.1016/S0306-4522(01)00460-2

    62. [62]

      Kim T, Vidal G S, Djurisic M, William C M, Birnbaum M E, Garcia K C, Hyman B T, Sharz C J. Science, 2013, 341: 1399 − 1404  doi: 10.1126/science.1242077

    63. [63]

      Ohnishi T, Yanazawa M, Sasahara T, Kitamura Y, Hiroaki H, Fukazawa Y, Kii I, Nishiyama T, Kakita A, Takeda H. Proc Natl Acad Sci USA, 2015, 112: E4465 − E4474  doi: 10.1073/pnas.1421182112

    64. [64]

      Cisse M, Halabisky B, Harris J, Devidze N, Dubal D B, Sun B, Orr A, Lotz G, Kim D H, Hamto P. Nature, 2011, 469: 47 − 52  doi: 10.1038/nature09635

    65. [65]

      Snyder E M, Nong Y, Almeida C G, Paul S, Moran T, Choi E Y, Nairn A C, Salter M W, Lombroso P J, Gouras G K, Greengard P. Nat Neurosci, 2005, 8: 1051 − 1058  doi: 10.1038/nn1503

    66. [66]

      Lauren J, Gimbel D A, Nygaard H B, Gilbert J W, Strittmatter S M. Nature, 2009, 457: 1128 − 1132  doi: 10.1038/nature07761

    67. [67]

      Renner M, Lacor P N, Velasco P T, Xu J, Contractor A, Klein W L, Triller A. Neuron, 2010, 66: 739 − 754  doi: 10.1016/j.neuron.2010.04.029

    68. [68]

      Haas L T, Salazar S V, Kostylev M A, Um J W, Kaufman A C, Strittmatter S M. Brain, 2016, 139: 526 − 546  doi: 10.1093/brain/awv356

    69. [69]

      Hu N W, Nicoll A J, Zhang D, Mably A J, O’Malley, T, Pirro S A, Terry C, Collinge J, Walsh D M, Rowan M J. Nat Commun, 2014, 5: 3374  doi: 10.1038/ncomms4374

    70. [70]

      Gomez-Ramos A, Diaz-Hernandez M, Rubio A, Miras-Portugal M T, Avila J. Mol Cell Neurosci, 2008, 37: 673 − 681  doi: 10.1016/j.mcn.2007.12.010

    71. [71]

      Shrivastava A N, Redeker V, Fritz N, Pieri L, Almeida L G, Spolidoro M, Liebmann T, Bousset L, Renner M, Lena C. EMBO J, 2015, 34: 2408 − 2423  doi: 10.15252/embj.201591397

    72. [72]

      Mao X, Ou M T, Karuppagounder S S, Kam T I, Yin X, Xiong Y, Ge P, Umanah G E, Brahmachari S, Shin J H. Science, 2016, 353: 3374  doi: 10.1126/science.aah3374

    73. [73]

      Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C, Valtorta F, Chieregatti E. Cell Death Differ, 2014, 21: 1971 − 1983  doi: 10.1038/cdd.2014.111

    74. [74]

      Jackson K, Barisone G A, Diaz E, Jin L W, DeCarli C, Despa F. Ann Neurol, 2013, 74: 517 − 526  doi: 10.1002/ana.v74.4

    75. [75]

      Bharadwaj P, Wijesekara N, Liyanapathirana M, Newsholme P, Ittner L, Fraser P, Verdile G. J Alzheimers Dis, 2017, 59: 421 − 432  doi: 10.3233/JAD-161192

    76. [76]

      Tarasoff-Conway J M, Carare R O, Osorio R S, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic B V, Frangione B, Blennow K, Menard J, Zetterberg H, Wisniewski T, de Leon M J. Nat Rev Neurol, 2015, 11: 457 − 470  doi: 10.1038/nrneurol.2015.119

    77. [77]

      Shibata M, Yamada S, Kumar S R, Calero M, Bading J, Frangione B, Holtzman D M, Miller C A, Strickland D K, Ghiso J, Zlokovic B V. J Clin Invest, 2000, 106: 1489 − 1499  doi: 10.1172/JCI10498

    78. [78]

      Liu C C, Liu C C, Kanekiyo T, Xu H, Bu G. Nat Rev Neurol, 2013, 9: 106 − 118  doi: 10.1038/nrneurol.2012.263

    79. [79]

      Deane R, Du Yan S, Submamaryan R K, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt A M, Armstrong D L, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B. Nat Med, 2003, 9: 907 − 913  doi: 10.1038/nm890

    80. [80]

      Boland B, Wai H Y, Olga C, Bertrand M, Alexandre H, Erwan B, Olivier R M, Mark J M. Nat Rev Drug Dis, 2018, 17: 660 − 689  doi: 10.1038/nrd.2018.109

    81. [81]

      Schilling M A. J Alzheimers Dis, 2016, 51: 961 − 977  doi: 10.3233/JAD-150980

    82. [82]

      Duckworth W C, Bennett R G, Hamel F G. Endocr Rev, 1998, 19: 608 − 624

    83. [83]

      Del Campo M, Stargardt A, Veerhuis R, Reits E, Teunissen C E. Neurosci Lett, 2015, 589: 47 − 51  doi: 10.1016/j.neulet.2015.01.036

    84. [84]

      Xie L, Helmerhorst E, Taddei K, Plewright B, van Bronswijk W, Martins R. J Neurosci, 2002, 22: RC221 − RC226  doi: 10.1523/JNEUROSCI.22-10-j0001.2002

    85. [85]

      Perez A, Morelli L, Cresto J C, Castano E M. Neurochem Res, 2000, 25: 247 − 255  doi: 10.1023/A:1007527721160

    86. [86]

      Wilkinson K, El Khoury J. Int J Alzheimers Dis, 2012, 2012: 489456

    87. [87]

      Sevigny J, Chiao P, Bussiere T, Weinreb P H, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan M S, Quintero-Monzon O, Scannevin R H, Moore Arnold H, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch R M, Sandrock A. Nature, 2016, 537: 50 − 70  doi: 10.1038/nature19323

    88. [88]

      Brandenbury L O, Konrad M, Wruck C J, Koch T, Lucius R, Pufe T. J Neurochem, 2010, 113: 749 − 760  doi: 10.1111/jnc.2010.113.issue-3

    89. [89]

      Fujii N, Kaji Y, Fujii N. J Chromatogr B, 2011, 879: 3141 − 3147  doi: 10.1016/j.jchromb.2011.05.051

    90. [90]

      Nishikawa, T. J Chromatogr B, 2011, 879: 3169 − 3183  doi: 10.1016/j.jchromb.2011.08.030

    91. [91]

      Man E H, Sandhouse M E, Burg J, Fisher G H. Science, 1983, 220: 1407 − 1408  doi: 10.1126/science.6857259

    92. [92]

      Wiklund L, Toggenburger G, Cuenod M. Science, 1982, 216: 78 − 80  doi: 10.1126/science.6121375

    93. [93]

      Jonhson J W, Ascher P. Nature, 1987, 325: 529 − 530  doi: 10.1038/325529a0

    94. [94]

      Suzuki M, Imanishi N, Mita M, Hamase K, Aiso S, Sasabe J. ASN Neuro, 2017, 5: 1 − 10

    95. [95]

      Fisher G H, Payan I L, Chou S J, Man E H, Cerwinski S, Martin T, Emory C, Frey W H. Brain Res Bull, 1991, 28: 127 − 131

    96. [96]

      Payan I L, Chou S J, Fisher G H, Man E H, Emory C, Frey W H. Neurochem Res, 1992, 17: 187 − 191  doi: 10.1007/BF00966798

    97. [97]

      Chouinard M, Gaitan D, Wood P. J Neurochem, 1993, 61: 1561 − 1564  doi: 10.1111/jnc.1993.61.issue-4

    98. [98]

      Lowe S L, Bowen D M, Francis P T, Toru M. Neurosci, 1990, 38: 571 − 577  doi: 10.1016/0306-4522(90)90051-5

    99. [99]

      Sakai-Kato K, Naito M, Utsunomiya-Tate N. Biochem Biophys Res Commun, 2007, 364: 464 − 469  doi: 10.1016/j.bbrc.2007.10.014

    100. [100]

      Oda A, Kobayashi K, Takahashi O. Chem Biodiversity, 2010, 7: 1357 − 1363  doi: 10.1002/cbdv.200900299

    101. [101]

      Roher A E, Lowenson J D, Clarke S, Wolkow C, Wang R, Cotter R J, Reardon I M, Zurcher-Neely H A, Heinrikson R L, Ball M J, Greenberg B D. J Biol Chem, 1993, 268: 3072 − 3083

    102. [102]

      Wilson C C, Myles D, Ghosh M, Johnson L N, Wang W Q. New J Chem, 2005, 29: 1318 − 1322  doi: 10.1039/b419295h

    103. [103]

      Ollivaux C, Soyez D, Toullec J Y. J Peptide Sci, 2014, 20: 595 − 612  doi: 10.1002/psc.v20.8

    104. [104]

      Demarchi B, Collins M, Bergstrom E, Dowle A, Penkman K, Thomas-Oates J, Wilson J. Anal Chem, 2013, 85: 5835 − 5842  doi: 10.1021/ac4005869

    105. [105]

      Song X, Bao M, Li D, Li Y M. Mech Ageing Dev, 1999, 108: 239 − 251  doi: 10.1016/S0047-6374(99)00022-6

    106. [106]

      Wei H F, Li L, Song Q J, Ai H X, Chu J, Li W. Behav Brain Res, 2005, 157: 245 − 251  doi: 10.1016/j.bbr.2004.07.003

    107. [107]

      Rehman S U, Shah S A, Ali T, Chung J I, Kim M O. Mol Neurobiol, 2017, 54: 255 − 271  doi: 10.1007/s12035-015-9604-5

    108. [108]

      Lu J, Wu D W, Zheng Y L, Hu B, Zhang Z F, Ye Q, Liu C M, Shan Q, Wang Y J. Cereb Cortex, 2010, 20: 2540 − 2548  doi: 10.1093/cercor/bhq002

    109. [109]

      Yu Y, Bai F, Liu Y, Yang Y, Yuan Q, Zou D, Qu S, Tian G, Song L, Zhang T, Li S, Liu Y, Wang W, Ren G, Li D. Mol Cell Biochem, 2015, 403: 287 − 299  doi: 10.1007/s11010-015-2358-6

    110. [110]

      Qing G Y, Zhao S L, Xiong Y T, Lv Z Y, Jiang F L, Liu Y, Chen H, Zhang M X, Sun T L. J Am Chem Soc, 2014, 136: 10736 − 10742  doi: 10.1021/ja5049626

    111. [111]

      Gao G B, Zhang M X, Lu P, Guo G, Wang D, Sun T L. Angew Chem Int Ed, 2015, 54: 2245 − 2250  doi: 10.1002/anie.201410768

    112. [112]

      Malishev R, Arad E, Bhunia S K, Shaham-Niv S, Kolusheva S, Gazit E, Jelinek R. Chem Commun, 2018, 54: 7762 − 7767  doi: 10.1039/C8CC03235A

    113. [113]

      Wei W, Xu C, Gao N, Ren J S, Qu X G. Chem Sci, 2014, 5: 4367 − 4374  doi: 10.1039/C4SC01386G

    114. [114]

      Sen S, DasGupta S, DasGupta S. J Phys Chem C, 2017, 121: 18935 − 18946  doi: 10.1021/acs.jpcc.7b05354

    115. [115]

      Wadai H, Yamaguchi K, Takahashi S, Kanno T, Kawai T, Naiki H, Goto Y. Biochemistry, 2005, 44: 157 − 164  doi: 10.1021/bi0485880

    116. [116]

      Dutta S, Foley A R, Warner C J A, Zhang X, Rolandi M, Abrams B, Raskatov J A. Angew Chem Int Ed, 2017, 56: 11506 − 11510  doi: 10.1002/anie.201706279

    117. [117]

      Chalifour R J, McLaughlin R W, Lavoie L, Morissette C, Tremblay N, Boule M, Sarazin P, Stea D, Lacombe D, Tremblay P, Gervais F. J Biol Chem, 2003, 278: 34874 − 34881  doi: 10.1074/jbc.M212694200

    118. [118]

      Wiesehan K, Stohr J, Nagel-Steger L, van Groen T, Riesner D, Willbold D. Protein Eng Des Sel, 2008, 21: 241 − 246  doi: 10.1093/protein/gzm054

    119. [119]

      Leithold L H E, Jiang N, Post J, Ziehm T, Schartmann E, Kutzsche J, Jon Shah N, Breitkreutz J, Langen K J, Willuweit A, Willbold D. Pharm Res, 2016, 33: 328 − 336  doi: 10.1007/s11095-015-1791-2

    120. [120]

      Guan Y J, Du Z, Gao N, Cao Y, Wang X H, Scott P, Song H L, Ren J S, Qu X G. Sci Adv, 2018, 4: eaao6718  doi: 10.1126/sciadv.aao6718

    121. [121]

      Sood A, Abid M, Hailemichael S, Foster M, Török B, Török M. Bioorg Med Chem Lett, 2009, 19: 6931 − 6934  doi: 10.1016/j.bmcl.2009.10.066

    122. [122]

      Wang Y X, Zhou L, Wang J, Lin B, Wang X B, Huang X X, Song S J. Bioorg Chem, 2018, 77: 579 − 585  doi: 10.1016/j.bioorg.2018.02.001

    123. [123]

      Root-Bernstein R S, Holsworth D D. J Theor Biol, 1998, 190: 107 − 119  doi: 10.1006/jtbi.1997.0544

    124. [124]

      Heal J R, Roberts G W, Christie G, Miller A D. ChemBioChem, 2002, 3: 86 − 92  doi: 10.1002/(ISSN)1439-7633

    125. [125]

      Evers M M, Toonen L J A, van Roon-Mom W M C. Adv Drug Del Rev, 2015, 87: 90 − 103  doi: 10.1016/j.addr.2015.03.008

    126. [126]

      Baker S K, Chen Z L, Norris E H, Revenko A S, MacLeod A R, Strickland S. Proc Natl Acad Sci USA, 2018, 115: E9687 − E9696  doi: 10.1073/pnas.1811172115

    127. [127]

      Engel M F M, van den Akker C C, Schleeger M, Velikov K P, Koenderink G H, Bonn M. J Am Chem Soc, 2012, 134: 14781 − 14788  doi: 10.1021/ja3031664

    128. [128]

      Galvagnion C. J Parkinson’s Dis, 2017, 7: 433 − 450  doi: 10.3233/JPD-171103

    129. [129]

      Yang M, Wang K, Lin J, Wang L, Wei F, Zhu J, Zheng W, Shen L. Langmuir, 2018, 34: 8408 − 8414  doi: 10.1021/acs.langmuir.8b01315

    130. [130]

      Ikeda K, Matsuzaki K. Biochem Biophys Res Commun, 2008, 370: 525 − 529  doi: 10.1016/j.bbrc.2008.03.130

    131. [131]

      Rangachari V, Dean D N, Rana P, Vaidya A, Ghosh P. Biochim Biophy Acta Biomembr, 2018, 1860: 1652 − 1662  doi: 10.1016/j.bbamem.2018.03.004

    132. [132]

      Hong S, Beja-Glasser V F, Nfonoyim B M, Frouin A, Li S, Ramakrishnan S, Merry K M, Shi Q, Rosenthal A, Barres B A. Science, 2016, 352: 712 − 716  doi: 10.1126/science.aad8373

    133. [133]

      Liebmann T, Renier N, Bettayeb K, Greengard P, Tessier-Lavigne M, Flajolet M. Cell Rep, 2016, 16: 1138 − 1152  doi: 10.1016/j.celrep.2016.06.060

    134. [134]

      Ulmschneider J P, Ulmschneider M B. Acc Chem Res, 2018, 51: 1106 − 1116  doi: 10.1021/acs.accounts.7b00613

    135. [135]

      Press-Sandler O, Miller Y. Biochim Biophys Acta Biomembr, 2018, 1860: 1889 − 1905  doi: 10.1016/j.bbamem.2018.03.014

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    7. [7]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    19. [19]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

Metrics
  • PDF Downloads(0)
  • Abstract views(108)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return